
A Artifact Appendix

A.1 Abstract
This artifact contains the source code of the AmpFuzz fuzzer
as well as a number of scripts that were used to evaluate it
on a number of programs from the Debian repositories. As
the evaluation pipeline is configured to run in multiple docker
containers, a linux-based host-system running the docker dae-
mon is required. To confirm that the artifact is functional and
to reproduce individual results, a commodity laptop or com-
puter does suffice. E.g., development took place on a core i5
with 8GB of RAM, on which re-discovery of the bosserver
amplification vulnerability takes less than 5 minutes. To re-
run the entire pipeline, which fuzzes all targets five times for
24 hours, a system with a larger number of cores and more
RAM is recommended (our experiments ran on a server with
two Intel Xeon Gold 6230N and 512GB of RAM, on which
the pipeline finished in about 4 days).

Lastly, this artifact also contains code to synthesize python
code from identified amplification vulnerabilities, which can
be used to develop amplification honeypots. This step only
requires a working Python3 installation on the host system
and can also be run on a commodity system.

Overall, this artifact should show that

• The AmpFuzz fuzzer is functional and can discover am-
plification vulnerabilities.

• The honeypot synthesis step is functional and produces
python code.

• A full 5x 24h evaluation reproduces Table 2 (within
the confidence intervals provided), similar maximum
amplification factors to those shown in Figure 5, and
similar results to those shown in Figure 4 for UDP-aware
fuzzing.

A.2 Artifact check-list (meta-information)
• Algorithm: No new algorithm is presented.

• Program: No standardized benchmark is available. Instead,
AmpFuzz is evaluated on 20 services from the Debian reposi-
tories.

• Compilation: AmpFuzz leverages LLVM11.0.1 and builds on
the compile-time instrumentation from ParmeSan and Angora.
All sources are included with the artifact and automatically
built.

• Transformations: AmpFuzz requires no external program
transformation tools.

• Binary: No binaries are required/included.

• Model: No model is used.

• Data set: The “evaluation data set” consists of 20 debian
programs. A script to reproduce the dataset from public debian
repositories is included.

• Run-time environment:
AmpFuzz was tested on Linux, requires access to a running
docker daemon and relies on bash, GNU make, and xargs.

• Hardware: No special hardware is requried (a x86_64 pro-
cesser is assumed).

• Run-time state: The artifact is non-sensitive to run-time state.

• Execution: Other heavy loads on the system could impact
results.

• Security, privacy, and ethical concerns: AmpFuzz only per-
forms local testing of publicly available programs. Where pos-
sible, care has been taken to prevent fuzzed services from
opening external network connections.

• Metrics: Included scripts and the AmpFuzz report on

– Number of unique execution paths

– Number of unique network requests (as defined by
unique basicblock coverage)

– Number of amplification inducing network requests

– Maximum amplification factor on layer 2 (including Eth-
ernet frames)

– Maximum amplification factor on layer 7 (UDP payload
only)

– Elapsed seconds until first response

• Output: Each fuzz run produces

– A human-readable console log with statistics
(fuzz.log)

– A csv file with fine-grained statistics (angora.log)

– a folder with tested requests as individual files
(queue/id:<numeric_id>)

– a folder with amplification induc-
ing requests as individual files
(amps/amp_<amp_factor_l2>_<path_hash>_<input_hash>)

Scripts are provided to generate the tables and figures included
in the paper from these raw-results:

– 02_print_table.py produces LaTeX code on which
Table 2 is based

– 03_plot_grid.py procudes Figures 4 and 5

• Experiments: Mostly automated, see detailed description
below.

• How much disk space required (approximately)?: For veri-
fying functionality on individual targets, 20GB should suffice
(the source-code repository requires approximately 3GB, most
of this from the LLVM git repository, the basic docker contain-
ers take around 13GB). Docker containers and output from the
full evaluation fit on a 1TB drive.

• How much time is needed to prepare workflow (approxi-
mately)?: Building the initial docker containers (step 1 above)
should take less than 15 minutes.

• How much time is needed to complete experiments (ap-
proximately)?: Running the full evalution with no changed
parameters (5 repetitions, 24 hour timeouts plus several 1 hour
runs with different configurations) took about 4 days on a sys-
tem with 80 threads.



• Publicly available (explicitly provide evolving version refer-
ence)?: AmpFuzz is publicly available at https://github.
com/cispa/ampfuzz

• Code licenses (if publicly available)?: AmpFuzz is licensed
under Apache License 2.0

• Data licenses (if publicly available)?: n/a

• Workflow frameworks used?: No workflow frameworks
were used (evaluation pipeline only requires GNU make and
xargs)

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/cispa/ampfuzz/releases/tag/
usenix22_ae

A.3 Description
A.3.1 How to access

AmpFuz can be retrieved from GitHub via

git clone --recursive
https://github.com/cispa/ampfuzz↪→

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

• Linux host OS

• Docker

• bash

• GNU make

• GNU xargs

• Python3 with packages pandas, numpy, seaborn

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

AmpFuzz only performs local testing of publicly available programs.
Where possible, care has been taken to prevent fuzzed services from
opening external network connections.

A.4 Installation
A.4.1 Build docker base images

from the project directory, run

make

This will take some time and build four docker images:

• ampfuzz:base: serves as the base-image for the other three
stages, basically a Ubuntu 20.10 image with some packages
installed and including a copy of the llvm source.

• ampfuzz:wllvm_wrapper: used to build ubuntu packages
with wllvm, a the whole-program LLVM wrapper. Our later
stages use wllvm to extract LLVM bitcode from installed pack-
ages.

• ampfuzz:fuzzer: includes the fuzzer and required instrumen-
tation tools.

• ampfuzz:symbolic_execution: includes the symcc sym-
bolic execution engine, and is used to instrument targets and
replay the amplification inputs to collect path constraints.

A.5 Evaluation and expected results
We claim that

1. AmpFuzz fuzzer is functional and can discover amplification
vulnerabilities (Table 2 in the paper)

2. UDP-aware fuzzing allows AmpFuzz to find amplification
inducing responses faster than static timeouts (Figure 4 in the
paper)

3. The amplification maximization routines of AmpFuzz can lead
to higher maximum amplification factors than coverage-guided
fuzzing alone (Figure 5 in the paper)

A full evaluation run should produce results from which Table 2,
Figure 4 and Figure 5 could be reproduced (within the confidence
intervals provided in the paper).

A.5.1 Prepare Evaluation Directory

from the eval subdirectory, run

make

This will generate a fresh evaluation directory in
eval/04_create_eval_dir/eval. This directory contains

• args: A textfile containing the different fuzzer configurations
and timeouts

• build_scripts: helper scripts to build containers used for
fuzzing

• eval_scripts: helper scripts to analyze results (see below)

• fuzz_all.sh: bash script to run entire fuzzing pipeline

• fuzz_scripts: helper scripts used during fuzzing

• hpsynth_scripts: helper scripts used during honeypot code
synthesis

• Makefile: a GNU make script with rules to build containers
used for fuzzing (makes use of build_scripts)

• targets: configuration info for fuzz targets.

– <debian_package>/<path_to_binary_escape>/<port>:
configuration directory for a single fuzz target. Will also
be used to store log-files and container information.

* args: commandline arguments to be passed to the
fuzz target

https://github.com/cispa/ampfuzz
https://github.com/cispa/ampfuzz
https://github.com/cispa/ampfuzz/releases/tag/usenix22_ae
https://github.com/cispa/ampfuzz/releases/tag/usenix22_ae


* config.sh: bash script that configures the fuzz target
for fuzzing

• targets.json: json file containing tuples of

1. debian package
2. path to binary
3. port number

for all fuzz targets.
This newly built eval directory can be moved around freely.

Everything from here onwards will happen within this directory!

A.5.2 Fuzz

Running fuzz_all.sh within this newly created eval directory will
now

1. use the generated Makefile to prepare all targets for fuzzing
(i.e., building and instrumenting the target into individual
docker images)

2. fuzz each target with each configuration and collect all results
into a new results directory

3. run the paths-to-message deduplication script. This script col-
lects all unique "paths" found during fuzzing and executes them
against the dataflow-instrumented target binary, collecting only
request-dependent CFG edges.

For each target and run, a new subfolder will be created of the
form results/<pkg>/<binary>_<port>/<run>.

A.5.3 Analyze results

Once fuzzing and path-deduplication has completed, the new
results directory can be analyzed:

1. eval_scripts/01_compute_amp_stats.py will extract fi-
nal stats for each run into a file results/results.json

2. eval_scripts/02_print_table.py will generate latex
code for the overview table shown in the paper

3. eval_scripts/03_plot_grid.py will generate the plots to
show the results of different timeouts and amplification maxi-
mization runs

A.5.4 (optional) generate honeypot code

Prepare a target for symbolic exeuction,
run constraint-collection for a run folder
(results/<pkg>/<binary>_<port>/<config>/<run>) and
convert the collected constraints to python code:

1. Build a docker container for symbolic execution of the target:

make targets/<debian_package>/.sym_config_<path ⌋
_to_binary_escaped>_<port>.iid↪→

2. bash hpsynth_scripts/synth_one.sh <run_folder>
will create a constraints file named hpsynth/sym.result in
the run folder.

3. python hpsynth_scripts/main.py <sym.result> will
output python code for a number of check and output
functions, along with a combined gen_reply function.

(Honeypot-skeleton for listening on ports and providing rate-
limiting is not provided with this project)

A.6 Experiment customization
A.6.1 Full pipeline customization

Evaluation is controlled by two files, args and fuzz_all.sh. args
contains the different fuzzing configurations, one per line, in the
following format

<output_directory> <timeout> [extra_args ...]

E.g., the two lines

24h 24h
1h_100ms 1h -a=--disable_listen_ready

-a=--early_termination=none
-a=--startup_time_limit=100000
-a=--response_time_limit=100000

↪→

↪→

↪→

will run

1. a default configuration for 24 hours and store the results into
directory 24h

2. a configuration with a static timeout of 100ms and store the
results into directory 1h_100ms

The fuzz_all.sh script further specifies how often each experi-
ment should be repeated. This is controlled with the N_RUNS variable
(defaults to 5).

A.6.2 Individual results

Individual targets (e.g., for confirming functionality) can be tested
as follows: First, to build a docker container for a specific target, run

make targets/<debian_package>/.fuzz_config_<path_to ⌋
_binary_escaped>_<port>.iid↪→

to build one of the configred targets. For example, to pre-
pare a container to fuzz /usr/sbin/bosserver from the package
openafs-fileserver on port 7007, use

make targets/openafs-fileserver/.fuzz_config__usr_s ⌋
bin_bosserver_7007.iid↪→

This will

• download the package sources for the target from the debian
repositories

• compile it using wllvm

• install the package

• instrument the target binary for fuzzing

• apply additional configurations (from
files args and config.sh found under
targets/<debian_package>/<binary>/<port>)

A list of all valid targets can be retrieved using

make -qp|grep -oE
'targets/[^/]*/.fuzz_config[^/]*iid'|sort -u↪→

To fuzz the target in its newly built container, run

bash fuzz_scripts/fuzz_one -r <runid>
<debian_package> <path_to_binary>
<port> <result_directory> <timeout>

↪→

↪→



where <runid> is just some number to identify the run (used as
part of the output path).

Sticking with the example, to fuzz /usr/sbin/bosserver
for 5 minutes and storing the results under
results/openafs-fileserver/_usr_sbin_bosserver_7007/5m/01/,
use

bash fuzz_scripts/fuzz_one.sh -r 1
openafs-fileserver /usr/sbin/bosserver 7007
results/openafs-fileserver/_usr_sbin_bosserver_ ⌋
7007/5m
5m

↪→

↪→

↪→

↪→

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Build docker base images

	Evaluation and expected results
	Prepare Evaluation Directory
	Fuzz
	Analyze results
	(optional) generate honeypot code

	Experiment customization
	Full pipeline customization
	Individual results

	Version


