
A Artifact Appendix

A.1 Abstract
SGXFuzz presents a novel approach to fuzz SGX enclaves
in a user-space environment including the synthesis of
ECall structures that automatically synthesizes a nested input
structure as expected by the enclaves using a binary-only
approach. The prototype consists of an enclave dumper that
extracts enclaves memory from distribution formats, a fuzzing
setup to fuzz extracted enclave, as well as a series of scripts
to perform result aggregation. The fuzzing setup is the core
of SGXFuzz and is built upon the kAFL fuzzer and the Nyx
snapshotting engine. We extend the existing code of kAFL
to accommodate our structure synthesis in Python. The Nyx
fuzzing engine utilizes the Intel PT CPU extension to get code
coverage information but does not contain any changes for
SGXFuzz. Finally, we provide several scripts to process the
crashes found during the fuzzing campaigns as well as the
synthesized structure layouts.

A.2 Artifact check-list (meta-information)
• Compilation:

recent cmake, gcc/g++, c++20, Ubuntu 22 recommended

• Transformations:
custom binary-to-binary included

• Binary:
Ubuntu 5.10.75 kernel

• Run-time environment:
Linux/Ubuntu, custom kernel included, root access, bare
metal/no VM

• Hardware:
Intel CPU, Skylake or newer (Intel-PT-capable)

• Metrics:
Structure Layouts, Crashes/Vulnerabilities/Bugs, Coverage

• Output:
Terminal, Files (msgpack/structures, edges, crashing payloads)

• Experiments:
• Extract enclaves

• Run the Fuzzer (compile runner, start fuzzing)

• Post-process/aggregate results
• How much disk space required (approximately)?

3.5 GB install size + temporary 10–30 GB

• How much time is needed to prepare workflow (approxi-
mately)?
3 h

• How much time is needed to complete experiments
(approximately)?
Full experiment:
24 h per run, 30 main evaluation runs, 80 ablation runs
= 110 days using a single machine (+ data aggregation)
Minimal sample evaluation: 1 h

• Publicly available (explicitly provide evolving version
reference)?
https://github.com/uni-due-syssec/sgxfuzz/

• Code licenses (if publicly available):
MIT, BSD, GPL, AGPL, Apache (see individual components)

• Workflow frameworks used?
Bash and Python

• Archived (explicitly provide DOI or stable reference):
https://github.com/uni-due-syssec/sgxfuzz/tree/
usenix2022

A.3 Description
We will now describe the components of the artifact, how they are
related and what each component is used for. The SGXFuzz artifact
consists of the enclave dumper, enclave runner, the fuzzing setup, and
the enclaves evaluated in the paper. The enclave dumper extracts the
enclave memory from enclave distribution formats (cf. Section 5.1).
This step has to be done only once per enclave, and we have already
performed that step for all enclaves. The enclave runner uses the
previously extracted enclave memory to run the enclave as a regular
user-space process (cf. Section 5.2). The runner is a C++ program
that loads the enclave memory, handles the emulation of the context
switch that would usually be performed by the SGX instruction set
and performs the structure allocation for each input. Finally, our
fuzzing setup consists of a front end that generates fuzzing inputs
and performs the structure synthesis, and a back end that executes
the target and collects coverage. We use kAFL as a foundation for
our fuzzing front end and add new code to the fuzzer to perform the
structure synthesis. The back end consists of a patched version of
QEMU and KVM to allow the collection of coverage data using the
Intel PT CPU extension. We did not perform any modifications on
the fuzzing back end.

A.3.1 How to access

All code relevant to the artifact and links to the components required
for the fuzzing setup are publicly available on GitHub https:
//github.com/uni-due-syssec/sgxfuzz/tree/usenix2022.

A.3.2 Hardware dependencies

Our fuzzing back end consisting of a modified QEMU and KVM
uses the Intel PT CPU extension to collect coverage data. Thus, an
Intel PT-enabled CPU is required to use our fuzzing setup. However,
Intel PT does not work in a virtualized environment and as such,
cannot run in VM. Notice that the Intel SGX is not required at any
point.

A.3.3 Software dependencies

Generally, any Linux distribution should be able to run our artifacts.
However, we only tested it on Ubuntu 22.04 and the scripts we
provided to set up the fuzzing setup were developed and tested with
Ubuntu 22.04 in mind.

https://github.com/uni-due-syssec/sgxfuzz/
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022
https://github.com/uni-due-syssec/sgxfuzz/tree/usenix2022


A.4 Installation

We include a setup script that should perform the major steps.

First, disable SGX in the BIOS if supported by the CPU.

Clone the repository.

Install required packages:
sudo apt install \
python2 python3 libpixman-1-dev pax-utils bc \
make cmake gcc g++ pkg-config unzip \
python3-virtualenv python2-dev python3-dev \
libglib2.0-dev

Then, you can use setup.sh to compile and install the components,
or follow the steps manually. That is:

• Initialize the submodules:
git submodule update --init --recursive --depth=1

• QEMU-Nyx:
https://github.com/nyx-fuzz/QEMU-Nyx#build

• KVM-Nyx:
https://github.com/nyx-fuzz/KVM-Nyx#
setup-kvm-nyx-binaries

• (Virtual) environments for python2 and python3 and install

– python2: configparser mmh3 lz4 psutil ipdb msgpack
inotify

– python3: six python-dateutil msgpack mmh3 lz4 psutil
fastrand inotify pgrep tqdm hexdump

• Install zydis (cd zydis && cmake . && make install)

A.5 Experiment workflow

The experiment workflow includes three main parts: Enclave
dumping, Fuzzing, Result aggregation.

A.5.1 Enclave Dumping

First, enclave dumping is used to extract the enclave mem-
ory. It is based on the Linux SGX SDK. By provid-
ing the enclave dumper with enclave.signed.so, a memory
dump with the name enclave.signed.so.mem, a memory
layout enclave.signed.so.layout, and the address of the
enclave’s entry point (specifically the offset of the TCS)
enclave.signed.so.tcs.txt.

Compile is using:
make -C ./enclave-dumper/

Run it using:
./enclave-dumper/extract.sh [enclave.signed.so]

A.5.2 Fuzzing

To fuzz the previously extracted enclave, several steps are involved.
We bundled all of them together in a script that runs a minimal
fuzzing test:

./run-example.sh

The script runs the following steps automatically. First, the enclave
runner is compiled using

make-enclave-fuzz-target.sh enclave.signed.so.mem \
enclave.signed.so.tcs.txt

The result of the compilation is a fuzz-generic binary, which is
the user-space version of the enclave, and a liblibnyx_dummy.so,
which is required for the fuzzer.

In the next step, the fuzzing target is packed into a VM that is
executed using the QEMU-KVM setup. The packer script can be
called as follows
nyx_packer.py <enclave-runner> <fuzz-folder> m64 \
--legacy --purge --no_pt_auto_conf_b \
--fast_reload_mode --delayed_init

Finally, the fuzzing can be started using the kAFL fuzzing frontend.
The exact command can be found in the run_example.sh script.

If desired, manually crafted seeds can be added to the imports
folder. Each seed is a file consisting of the ECall ID, the serialized
structure definition, and the contents of the buffers.

A.5.3 Result Aggregation

Display synthesized structures:
display-structs.py <path/to/fuzzing-workdir> \
<ecall_index>

The script displays the evolvement of the synthesized structure in a
tree format for each ECall index, with the ECall index being zero-
based. The leaves show the final evolvement of the synthesized
structures. Each leave shows the synthesized structure in a specific
format.

Structures are serialized, e.g., 40 2 C8 4 0 C24 7 0, and read left
to right. This string denotes a structure of 40 Bytes, which has two (2)
child structures (C). The first child is at offset 8 of the parent and is
defined the same way: A size of 4 and zero (0) children. The second
child has a size of 7 and also zero children. Further, the sizes may
be annotated with their address (40:0x7ffff7faafd8). Additional
types include buffers partially (on the edge) of the enclave’s memory
(P) and SizeOf (S) buffers of which the size is written to a defined
offset.

This script shows how to parse and dump these strings:
kafl/kAFL-Fuzzer/fuzzer/technique/struct_recovery.py

Display crashes:
analyze_crashes.py <eval-dir> \
-0 --np --no-ptr-0x7ff --no-large-diff

analyze_crashes.py script iterates through all crashes found by
the fuzzer. This includes the crashes due to implementation artifacts
mentioned in Section 5.5. The script performs the filtering according
to Section 5.5 and will only display valid crashes. However, manual
duplication of the crashes is required to find the real number
of unique bugs. The flags supplied to the script do the filtering
according to the described filtering techniques in the paper. The
script displays useful information to understand the crash: the ECall
ID, the signal (usually Segmentation Fault), pc (absolute/relative),
the disassembled instruction, and addresses used for memory access.

https://github.com/nyx-fuzz/QEMU-Nyx#build
https://github.com/nyx-fuzz/KVM-Nyx#setup-kvm-nyx-binaries
https://github.com/nyx-fuzz/KVM-Nyx#setup-kvm-nyx-binaries


Calculate Coverage:
calculate-coverage.sh <path/to/fuzzing-workdir>
Note that we recalculated the numbers of basic blocks using the basic
block semantic of Binary Ninja to provide numbers comparable to
TeeRex.

A.6 Evaluation and expected results & Experi-
ment customization

The main goal of the fuzzing process is to find crashing
inputs, i.e. vulnerabilities, and the synthesized structure
layouts that the enclave calls expects for its input. To
ensure that the artifact is functional, any enclave from the
previously provided links with enclaves can be used for
fuzzing, i.e., synaTEEv2-20211105 which is the Synaptics
Fingerprint Driver Enclave from the paper. Fuzz the enclave
using the steps shown in run_example.sh for 960 core-
hours. To fuzz another target than the example, change the
ENCLAVE_PATH variable to the target path and change the
enclave name enclave.signed.so to the target enclave’s
name, i.e., synaTEE.signed.dll.

After that, it is possible to use the previously described
workflow to display synthesized structures using the
display-structs.py script on the fuzzing workdir. To
analyze the crashes, the workflow to display the crashes can
be used. However, manual reverse engineering is required to
deduplicate bugs.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Enclave Dumping
	Fuzzing
	Result Aggregation

	Evaluation and expected results & Experiment customization
	Version


