
A Artefact Appendix

A.1 Abstract
Pistis artefact is a set of source files and scripts that
can be evaluated partially on a standard Linux environ-
ment (local evaluation), and partially with the support of a
MSP430F5529LP micro controller unit (MCU). However, we
provide the reviewers with an SSH access to a VM connected
to one of such board (remote evaluation). The VM is shared
between the reviewers and does not allow multiple users to in-
teract with the MCU at the same time. The reviewers are thus
asked for their collaboration in sharing such VM instance. For
the local evaluation, the reviewers will be asked to compile
the core of Pistis and use the available scripts to compile the
user-applications. For the remote evaluation, using the VM,
they will be asked to check Pistis at runtime, debugging its
execution using a GUI-based IDE.

A.2 artefact check-list (meta-information)
• Program: TI MSP430 Benchmark, custom test bench

• Compilation: msp430-gcc-9.2.0.50, included, public

• Transformations: python-script

• Run-time environment: Linux, non-root

• Hardware: x86_64 Machine, (optional) MSP430F5529LP

• Output: console, graphical, interactive

• Experiments: Python scripts, bash scripts, CodeComposerStu-
dio (CCS), debugging

• How much disk space required (approximately)?: 10GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 2 hours

• Publicly available (explicitly provide evolving version refer-
ence)?: https://github.com/MicheleGrisafi/PISTIS_
AE

• Code licenses (if publicly available)?: The 3-Clause BSD
License

• Archived (explicitly provide DOI or stable reference)?:
https://github.com/MicheleGrisafi/PISTIS_AE/
releases/tag/Artefact.v1

A.3 Description
Pistis is a Trusted Execution Environment (TEE) developed for
MSP4305529 Micro Controller Units (MCUs). Being a fully soft-
ware based TEE, its features are many spanning a complex software
structure. Although we provide the entirety of Pistis, with all of its
modules and test applications (as presented in the papers), we only
provide instructions on how to evaluate part of it. This is due to
the complex and time-demanding nature of a complete evaluation,
which would also require a MSP4305529LP MCU.

In particular, we provide instructions on how to: (i) build the core
of Pistis, (ii) use the custom toolchain to compile applications, (iii)
check the run-time verification process, (iv) check the run-time mem-
ory protection. While some of these operations can be performed
with a local environment (based on Ubuntu 20.04), others require
SSH access to a shared VM connected to a MSP4305529LP board.
This access must be shared between any reviewer who cannot in-
teract concurrently with the board. The local evaluation will only
require to run a few CLI commands, while the remote evaluation
will require the reviewers to operate on an Eclipse-based IDE and
its debugger. To facilitate the operations, we provide a few video
tutorials.

A.3.1 How to access

The artefact can be downloaded from the official artefact github
repository: https://github.com/MicheleGrisafi/PISTIS_AE.
It is worth noting that this repository is based on the official repos-
itory (link in the official paper). Given the strict hardware require-
ments for the evaluation of this artefact, we prepared a virtual ma-
chine (with ssh access) connected to a single MCU, the one we used
in our experiments. Although this setting poses some limitations to
the reviewers, it can be used to have a deeper inspection on how
Pistis functions.

In order to access the VM we set up, the following command
should be executed on a local graphical-based Linux environment:
no more available1. This will establish a two-hops ssh connection to
the private VM passing through a public VPS. The passwords for
the two hops, which will be required upon each connection, are the
following: Pistis1940 for the pistisAE user (first hop) and pistis
for the pistis user (the VM). The -Y option enables the forwarding of
the graphical environment, thus allowing the reviewers to visualise
on their own machine any GUI lunched on the remote machine.

A.3.2 Hardware dependencies

In order to compile our binaries, an x86_64 Linux based machine
should be used. Optionally, a MSP430F5529LP MCU can be used
to perform locally also the remote evaluation. Nevertheless, this
artefact provides the reviewer with a single shared VM instance con-
nected to one of such MCUs. This will help the reviewers to execute
code on the board. As a consequence, we proceed to describe two
environment: a local environment (local) for the MCU-independent
tests, and an MCU-connected environment (remote) for all the other
tests.

A.3.3 Software dependencies

To propose a baseline for the artefact evaluation, we base our exper-
iments on a machine running Ubuntu Desktop 20.04. On the local
environment, the following packages are required:

• make, python3, git

• any code editor

Notable is that some of them might already be included with
standard Linux-based OSs.

1The maintenance of a remote environment is expensive. We ask any
interested reader in either following the video tutorials or to follow the
official instructions on the official github repository.

https://github.com/MicheleGrisafi/PISTIS_AE
https://github.com/MicheleGrisafi/PISTIS_AE
https://github.com/MicheleGrisafi/PISTIS_AE/releases/tag/Artefact.v1
https://github.com/MicheleGrisafi/PISTIS_AE/releases/tag/Artefact.v1
https://github.com/MicheleGrisafi/PISTIS_AE

On the remote environment, the following software is required:

• libc6-i386 python2.7-dev libtinfo5 libusb-dev libgconf-2-4
python3-pip

• any code editor

• Code Composer Studio IDE (CCS)

The listed elements are however already installed on the remote
machine. Still, we provide the setup instructions for the reviewers to
set up their own remote environment in case they had an available
MCU.

A.4 Installation
Local Environment We leave the installation of a valid Ubuntu
20.04 desktop distribution to the reviewers. This is trivial due to
the multitude of available tutorials online. Given that our fresh and
minimal installation of Ubuntu comes with some packages already
installed, we only perform the steps in Listing 1. These steps install
the required packages, fetch the github repository and create an alias
for a tool required in the later evaluation.

1 $ sudo apt install git make
2 $ cd ∼/Documents/ && git clone https://github.com/

MicheleGrisafi/PISTIS_AE.git
3 $ echo ’alias mspdump="∼/Documents/PISTIS_AE/

toolchain/compiler/msp430-gcc-9.2.0.50_linux64
/bin/msp430-elf-objdump"’ >> ∼/.bashrc

4 $ source ∼/.bashrc

Listing 1: Steps to install the required packages on the local
environment

As already mentioned, we provide a "plug-n-play" VM to be
used as remote environment by any reviewers. Still, for the sake of
transparency and in the eventuality that the reviewer wanted to set
up their own remote environment, in Listing 2 we provide the steps
used to set it up.

1 $ sudo apt install libc6-i386 python2.7-dev
libtinfo5 libusb-dev libgconf-2-4 python3-pip

2 $ pip3 install pyserial
3 $ cd ∼/Downloads && wget https://dr-download.ti.

com/software-development/
ide-configuration-compiler-or-debugger/
MD-J1VdearkvK/11.2.0.00007/CCS11.2.0.00007
_linux-x64.tar.gz

4 $ tar -xvf CCS11.2.0.00007_linux-x64.tar.gz
5 $./CCS11.2.0.00007_linux-x64/ccs_setup_11

.2.0.00007.run
6 $ echo ’PATH="/home/pistis/ti/ccs1120/ccs/eclipse:

$PATH"’ >> ∼/.bashrc
7 $ source ∼/.bashrc

Listing 2: Steps to set up the remote environment.

These steps download the required packages, fetch the CCS binary
from the official TI website, extract it and install it. Finally, they
add the installation directory to the Linux PATH. During the CCS
installation, we should select the minimal installation and only select

the "MSP430 ultra-low power MCUs" option. Afterward, we have
to install the MSP430 toolchain from the official repository or link
CCS with our version. We will proceed with the first option. In CCS,
we should go to Help/CCS App Center, select the checkbox under
MSP430 GCC and click Install Software. After the installation
we can restart CCS.

A.5 Experiment workflow
This artefact evaluation contains two types of experiments. The first
mainly allow the reviewers to evaluate the custom toolchain, the
second allow them to inspect the run-time behaviour of Pistis.

Please be aware that for the second set of experiments, an SSH
connection to our remote environment is required. Furthermore, we
remind the reviewers that it is a single shared instance connected to a
single MCU. As a consequence, they cannot operate simultaneously
on the remote environment. We leave the organisational task to the
reviewers.

Disclaimer: The debugging experience with Code Composer
Studio, the official debugger for the MSP430 MCU, can be non-
ideal and lead to inconsistent results. There might be executions
with weird behaviours. This can be attributed to the state of the
MCU and some internal CCS/debugger issues. The reader is kindly
asked to follow the instructions as close as possible, sending us
(michele.grisafi@unitn.it) an email in case of any issues. Finally, the
interaction with the remote environment might not be ideal (slow
and not quite responsive). We leave some video tutorials performed
on the exact same setup on how to perform the experiments. If the
reviewers cannot manage to operate on the remote environment, they
are more than encouraged to check our result in such videos.

A.6 Evaluation and expected results
Code inspection The README.md file in the github reposi-
tory contains the repository folder structure, with a description
of the various content. The repository only contains the source
files, which can be inspected at the reviewers discretion. The
reviewer might inspect the various module composing the
TCM, inside the TCM/ folder, and the toolchain scripts, inside
the toolchain/ folder. The inspection of the source files can
be skipped in favour of the following steps and evaluations.
Still, given that Pistis is a complex software, we encourage
the reviewer to inspect as much of it as possible. We authors
remain available for any question on this matter.

Compiling the Trusted Computing Base The Trusted
Computing Base (TCM) is the core of Pistis, containing both
its basic functionalities and some Trusted Applications, i.e.,
additional features. To compile Pistis into a deployable we
can follow the commands in Listing 3. Step (4) allow the in-
spection of the disassembly of the binary, while step (5) allow
the inspection of code sections of the ELF file. We leave this
data, which describes the TCM, for the more experienced and
curios reviewers. Any interaction with the deployable file is
more than welcome.

1 $ cd ∼/Documents/PISTIS_AE/TCM
2 $ make clean && make
3 $ mspdump -D deployable.out > /tmp/dump.txt
4 $ cat /tmp/dump.txt
5 $ readelf -S deployable.out

Listing 3: Steps for the TCM compilation

A functioning toolchain One of the claim in the paper is
a modified toolchain that transparently instruments the un-
trusted application code. This allow the new application image
to be executed on a Pistis-enabled device. We ask the review-
ers to perform a few steps to evaluate our toolchain (note that
the reviewer is free to use the following indications as mere
guidelines and perform his/her own tests). In particular, we
will compile and inspect the instrumentation for a single ap-
plication: XorCypher. Next, we describe the required steps for
this evaluation. Each step is linked to the commands in List-
ing 4 (the number of the line will be included in parenthesis,
e.g., (1)).

• Move to the UpdateApplication folder inside the
repository (1) and clean it (2) to make sure no other
residual file is present (traces of old compilations).

• Copy the source files of the XorCypher application in
the src sub directory (3).

• Compile the application without using the modified
toolchain (4). If the compilation was successful, the fol-
lowing message should pop out in the console: "Meta-
data added –> created file deployable.out". This informs
us that our custom binary was created with the addition
of some metadata (only required for the transmission of
the binary).

• We can use mspdump2 to retrieve the content of the
binary (5). Mspdump is a disassembler for MSP430
binaries. Since mspdump can only read valid ELF
files, and that our binary is a custom optimised
format, we use mspdump on the original binary:
appWithNoMetadata.out.

• Inspect the dump of the binary (6), where illegal in-
structions can be found. For instance, the reviewers
can check for the presence of the reta instruction,
which is not compatible with Pistis (i.e., it is an un-
safe instruction). Alternatively, the assembly file in
UpdateApplication/asm/cryptoXor.s3 can be in-
spected (9).

• (Optional) Compare the size of the two binaries (7): the
deployable.out and the appWithNoMetadata.out. It

2The alias was created during the installation phase
3Note that this assembly file does not contain the stdlib code.

can be seen how our binary is considerably smaller, as
the paper claims.

• Re-compile the application using our modified toolchain
(8).

• Inspect the file as before (5)(6) and observe how there is
no trace of reta instructions anymore: they have been
virtualised.

• To have a better look at the instrumentation, open the
assembly file UpdateApplication/asm which contains
the new instrumented assembly code (9). The instrumen-
tation will be contained within comments, e.g. starting
from ";Old instruction: RET" to the ";End safe
sequence". Furthermore, observe the CFI NOP Slides
inserted after each CALL statement. The reviewer is wel-
come to deeply inspect such assembly files.

1 $ cd ∼/Documents/PISTIS_AE/UpdateApplication
2 $ make clean && rm src/* -rf && mkdir src
3 $ cp ../TestApps/XorCypher/xorCypher.c src/
4 $ make USE_NEW_LIB=0 VERIFY=0
5 $ mspdump -D appWithNoMetadata.out > /tmp/

dump.txt
6 $ cat /tmp/dump.txt
7 $ stat -c%s deployable.out appWithNoMetadata.

out
8 $ make clean && make libraries && make
9 $ cat asm/xorCypher.s

Listing 4: Steps for the toolchain evaluation

For the second part of this evaluation, we will show how
Pistis toolchain rejects applications having illegal instructions,
i.e., instructions trying to explicitly violate the access control
policy enforced by Pistis. To demonstrate this, we crafted
one such application containing a single illegal instruction:
BR #0x3400. Such instruction is indeed trying to jump to the
0x3400 address which is in RAM, thus illegal4. Listing 5
show the required steps.

1 $ cd ∼/Documents/PISTIS_AE/UpdateApplication
2 $ make clean && rm src/* -rf && mkdir src
3 $ cp ../TestApps/Malicious/rejectmalicious.c

src/
4 $ make

Listing 5: Steps for the toolchain evaluation

If everything functioned properly, the compilation at the
last step should output an error "The compiled application

4We recall that Pistis enforces a non-executable RAM.

has some unsafe code segments. Stop". This is because the
toolchain found an illegal instruction.5

The reviewers are more than welcome to perform any vari-
ation of this test. For instance, they could try and compile the
other applications or craft an application of their own. To do
so, the only step that needs to be adapted is (3), where the
reviewers should copy the source files of their liking.

Runtime verification in action One of the key features
of Pistis is the ability to inspect any deployed binary at run-
time, performing a verification. This step ensures that the
binary has indeed been compiled with our custom toolchain,
ultimately ensuring the presence of the instrumentation. To
evaluate the runtime verification of the untrusted code by
Pistis, we will use the debugging features of CCS. Given
the necessity of a MCU, we provide the reviewers with an
VM instance connected to a MSP430F5529LP board. Since
CCS is a GUI-based application, we provide a video-tutorial
on the various steps required for this evaluation: https://
youtu.be/tpEBLgRCVAU . This should help the reviewer in
performing the same evaluation. Nevertheless, we provide
some guidelines on what we will need to do.

In this evaluation we will use the malicious application
shown in listing 6. The application contains two lines of
assembly: a MOV operation loading an address (pointing to
RAM) into a CPU register, and a BR instruction jumping to
that address (via the register). This application is malicious
since it tries to jump to an address in RAM, thus violating the
memory protection imposed by Pistis.

1 __asm("MOV #0x3400, R9");
2 __asm("BR R9");

Listing 6: Malicious application that tries to jump in RAM
with a dynamic BR instruction.

For the evaluation we perform the following steps (also
shown in the video tutorial):

• Compile the application using the make VERIFY=0 com-
mand, which invokes a non-modified version of the com-
piler. This will produce an application binary without
any instrumentation.

• Start a debugging session of Pistis using CCS. In this
session we set a few breakpoints in some sensitive points
in the code. Specifically, we want to break the execution
when we reach either one of the following: verification
passed, verification failed.

• Start the execution of Pistis, which will proceed with its
RemoteUpdate feature and wait for an incoming image
on the serial communication.

5Note that illegal instructions are rejected right away, while unsafe in-
structions are virtualised. The latter cannot be rejected right away because
their outcome depends on the run-time state of the MCU.

• Deploy the new application binary (without instrumenta-
tion) through our python deploy script.

• Observe how the second breakpoint is triggered: the
verification fails and the application is not lunched.

This tutorial hence shows how Pistis bounds applications to
our instrumentation, i.e., to using our toolchain. Pistis will
only accept binaries which have indeed been compiled with
our toolchain.

In the next tutorial, we will show how Pistis run-time mem-
ory protection protects the MCU from the malicious activity
of an application compiled with our toolchain.

Memory protection in action To evaluate the memory
protection offered by Pistis on the MCU we will use the
debugging features of Code Composer Studio (CCS). These
will enable a run-time debugging of the MCU, allowing us to
check the operations of Pistis at run-time. For this purpose, we
deploy the same application of listing 6. However, contrarily
to previous experiment, we will instrument the malicious
application with our custom toolchain6. This will allow it to be
deployed, pass the verification and then be executed. However,
since the unsafe instruction (the jump to a register) is indeed
an illegal operation, this will be caught at run-time and the
application will be stopped. Given that an interaction with a
GUI is necessary for this step, we provide a video tutorial:
https://youtu.be/OhhJiyQC0bk. Nevertheless, we report
the main steps that we are going to do:

• Compile the application using the make command, which
invokes a modified version of the compiler. This will pro-
duce an application binary with Pistis instrumentation.

• Start a debugging session of Pistis using CCS. In this
session we set a few breakpoints in some sensitive points
in the code. Specifically, we want to break the execution
when we reach either one of the following: verification
passed, verification failed, virtual safe BR function in-
voked. The latter is the function that checks all unsafe
BR instructions in the code (which have been replaced
by a call to this virtual safe function by our toolchain).

• Start the execution of Pistis, which will proceed with its
RemoteUpdate feature and wait for an incoming image
on the serial communication.

• Deploy the new application binary using our custom
python deployer.

• Observe how the first breakpoint is triggered: the verifi-
cation succeed and the application is lunched.

• Observe how the third breakpoint is reached: the appli-
cation BR instruction is correctly virtualised.

6Notably, the application is not rejected by our toolchain, but its unsafe
instructions are instead virtualised.

https://youtu.be/tpEBLgRCVAU
https://youtu.be/tpEBLgRCVAU
https://youtu.be/OhhJiyQC0bk

• Observe how the safe BR function performs some se-
curity checks on the original instruction and stops the
execution of the application, given that the original jump
is illegal.

A.7 Experiment customization
The reviewers are encouraged to perform any experiment of
their liking on the local environment. For instance, they could
choose to execute or compile different applications, or even
craft their own. However, given the scarce resources of the
remote environment, we kindly ask them no to deviate from
the provided instructions. Any modification could impede the
work of the other reviewer. Moreover, the remote environ-
ment is provided with root access, thus allowing the reviewers
to completely compromise it if they operate outside of our
guidelines.

A.8 Notes
This artefact evaluation covers a few of the main functionali-
ties of Pistis, showing its potential. Pistis is almost fully im-
plemented (a few bugs and minor tweaks still to be addressed)
and it has been fully tested and evaluated (as documented in
the paper). However, the full evaluation is a cumbersome and
time-demanding process requiring several technical ability.
Furthermore, setting up a tutorial on how to properly test all
of its features is even a more challenging task (especially con-
sidering the remote nature of the majority of the tests). For
these reasons, this artefact only presents some of the possible
tests that could be performed on the executable. The creation
of complete tutorials is a future work.

Nevertheless, the repository contains a README.md file
that describes in details some additional steps required to
use Pistis. Note that this artefact document summarises only
some of these steps, providing some techniques to evaluate it
without owning the proper hardware.

A.9 Version
Based on the LaTeX template for artefact Evaluation
V20220119.

	Artefact Appendix
	Abstract
	artefact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version

