
A Artifact Appendix

A.1 Abstract
“Loki: Hardening Code Obfuscation Against Automated At-
tacks” is a paper on code obfuscation that focuses on harden-
ing VM handlers with the goal of thwarting automated attacks
such as symbolic execution.

Our artifact includes both the source code of our prototype,
which allows to create obfuscated binaries, and the attack
tooling used in the evaluation (on Github) as well as the data
generated during the evaluation (published as dataset on Zen-
odo). Our experiments cover various aspects from measuring
Loki’s overhead to measuring its resilience w.r.t. to automated
attacks. All experiments come with a README.md explain-
ing the individual scripts and a wrapper script to improve
usability. We use a Docker container to minimize setup prob-
lems and make the artifact accessible to different setups.

Evaluating this artifact will require

1. Building a docker container (and potentially download-
ing up to 50GB of data from an accompanying Zenodo
artifact)

2. Creating a number of obfuscated binaries (we provide
convenience wrapper scripts doing all the work)

3. Running 14 experiments (most of which have multiple
steps):

• Validating correctness and measuring overhead

• Running multiple attacks

Individual experiments may run multiple hours (depending on
whether (1) you want to use binaries created by us or create
them yourself and whether you focus on replicating the results
on a subset or intend to test all binaries).

A.2 Artifact check-list (meta-information)
• Data set: https://zenodo.org/record/6686932
• Hardware: 52 cores + 64GB RAM + 25GB disk space
• Experiments: 14 different ones, covering all aspects
• How much disk space required (approximately)?: 25GB
• How much time is needed to prepare workflow (approxi-

mately)?: 1h
• How much time is needed to complete experiments (ap-

proximately)?: 40h (experiments can run unattended after
being launched)

• Publicly available (explicitly provide evolving version ref-
erence)?: Yes

• Code licenses (if publicly available)?: AGPL 3
• Data licenses (if publicly available)?: AGPL 3
• Archived (explicitly provide DOI or stable reference)?:

10.5281/zenodo.6686932

A.3 Description
Our artifact is split into two parts: The core component is
the source code of our prototype and evaluation tooling (pub-
lished on Github). Beyond that, we published artifacts such
as produced binaries and raw results in a dataset on Zenodo.
In essence, our artifact includes 14 experiments, which cre-
ate obfuscated binaries, evaluate their overhead/correctness,
or attack them using a number of automated simplification
attacks.

Our code is intended to be run in a (provided) Docker
container.

A.3.1 How to access

• Download the source code from Github:
https://github.com/RUB-SysSec/loki/commit/
86134c1318347547debaf9b77e867d5b16d79d1d

• Download the dataset from Zenodo: https://zenodo.
org/record/6686932

A.3.2 Hardware dependencies

We recommend a server with many CPU cores (to reduce the
experiment runtime and speed-up evaluation); We recommend
more than 52 cores, at least 64 GB RAM, and about 25 GB
disk space. These are no hard requirements: Less cores may
work, but will increase the runtime of all experiments. Internet
access is recommended.

A.3.3 Software dependencies

We provide our code in form of a Docker image. We
have not tested the artifact on any OS other than
Linux; most distributions should work fine. Opti-
mally, your kernel supports Kernel Samepage Merg-
ing (https://www.kernel.org/doc/html/latest/admin-
guide/mm/ksm.html).

A.3.4 Data sets

There is a data set containing evaluation results, binaries, and
other artifacts resulting from our evaluation on Zenodo at
https://zenodo.org/record/6686932. It is 4.9GB when
zipped and 16GB when unzipped on disk.

A.4 Installation
1. Download the source code from Github:

git clone https://github.com/RUB-SysSec/loki.git

2. Use our wrapper script to build the Docker container:
cd loki && ./docker_build.sh

3. Start the docker container using our wrapper script:
./docker_run.sh

https://zenodo.org/record/6686932
https://github.com/RUB-SysSec/loki/commit/86134c1318347547debaf9b77e867d5b16d79d1d
https://github.com/RUB-SysSec/loki/commit/86134c1318347547debaf9b77e867d5b16d79d1d
https://zenodo.org/record/6686932
https://zenodo.org/record/6686932
https://zenodo.org/record/6686932


4. Running this script again will connect you to the con-
tainer:
./docker_run.sh

5. Within the docker container, install Loki and all depen-
dencies:
./setup.sh

Noteworthy, docker_run.sh will mount the loki direc-
tory within the container as volume: Simplified speak-
ing, anything within the container that is located within
/home/user/loki/ will be available outside the docker con-
tainer in the loki folder. This can be convenient, e. g., if
you want to copy the dataset from Zenodo into the Docker
container: Simply place it in the loki/ folder and it will be
accessible from within the container. A more detailed expla-
nation can be found in the Github README.md.

A.5 Experiment workflow
All experiments are located in loki/experiments/ with the
experiment number matching the one in the paper. Each ex-
periment is documented in a README.md and usually consists
of two to four steps. For your convenience, we provide Python
scripts automating that part (experiment_N.py). As some ex-
periments can share data (such as binaries generated), we rec-
ommend you do not change the default paths suggested (data
will almost always be placed in /home/user/evaluation).
Experiments can be customized by setting command line
flags, changing values of globals in the Python wrapper script,
or patching the scripts themselves (which we don’t recom-
mend generally). Our experiments usually run at least hours
up to days (the standard timeout used is always 1 hour for
each task; oftentimes there are at least 1,000 tasks per experi-
ment. We suggest you test the experiment on a subset of tasks
(e.g., by generating only 10 binaries instead of 1,000). All
experiment scripts already propose a more sensible value
of tasks. If this is not desired, changing NUM_INSTANCES (or
similar-named constants at top of the scripts) allows you fine-
granular control of how much tasks are executed.

A.6 Evaluation and expected results
Our experiments cover all relevant aspects. A detailed ap-
proach on how to reproduce them can be found in the
README.md files we provide for each experiment. The ex-
pectations of the experiment are outlined in the paper.

• Dead code elimination: Only a few instructions (1-2%)
of Loki’s handler can be removed

• Experiment 1 Correctness: The obfuscated binaries pro-
duced by Loki maintain the same functionality

• Experiment 2 Coverage: Full code and path coverage is
achieved.

• Experiment 3 Overhead: The obfuscated binaries pro-
duced by Loki have an overhead factor of 300 to 500
(runtime) and 20 to 50 (size)

• Experiment 04 Key Encodings: The SMT solver cannot
solve the Factorization-based key encoding and 70% of
the point functions

• Experiment 05 Key Encodings on Binary Level: The
SMT solver finds a correct key in 31% of the cases

• Experiment 06 Taint Analysis: Taint analysis taints all
but 17% of the instructions

• Experiment 07 Backward Slicing: Backward slicing
slices all but 5% to 8% of the instructions

• Experiment 08 Symbolic Execution: SE simplifies no
handler (static scenario) or 18% (dynamic attacker;
depth 3) / 15% (dynamic attacker; depth 5)

• Experiment 09 MBA Diversity: Loki uses
5,482/7,000 = 78% unique MBAs

• Experiment 10 MBA Formula Deobfuscation: LokiAt-
tack significantly outperforms MBA Blast (the best com-
petitor); resuls should be similar to Figure 3

• Experiment 11 Complexity of Core Semantics: Using
superoperators increases the number of core semantics
from 16 to 59; with superoperators, the semantic depth
ranges from 5 to 13 with a peak at depth 9

• Experiment 12 Limits of Program Synthesis: Synthesis
falls of w.r.t. synthesizing expressions of higher semantic
depth; shape should be similar to Figure 5

• Experiment 13 Superoperators on the binary level: Syn-
tia manages to synthesize about 19% of Loki’s expres-
sions

Due to non-determinism (in both our obfuscator and analy-
sis tooling) and the scope of this artifact evaluation (evaluating
10 binaries instead of 1,000), we expect quite some fluctu-
ations. In some cases, it may be necessary to evaluate 100
binaries instead of 10 to reproduce our results.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Evaluation and expected results
	Version


