
A Artifact Appendix

A.1 Abstract
This artifact provides the code for the tool and the experi-
ments, as described in the paper. The artifact describes two
workflows. The first workflow, WEBGRAPH, runs the classi-
fication pipeline: we crawl a set websites, build their graph
representations and extract features from these representa-
tions, and train a classifier to detect advertising and tracking
services (ATS) on the sites. The second workflow, Robustness,
consists of experiments to perform content and structural mu-
tations on graph representations to evade a classifier. The
artifact consists of three components. First, the source code in
a GitHub repository that allows a user to set up and run the de-
scribed workflows from scratch. Second, two docker images
with all dependencies installed, one with just the code and the
other with a sample database of 100 crawled sites to test the
pipelines. Three, a Google Drive folder with datasets from
a larger crawl of 10,000 sites, to validate the performance
of the classifier and use for other experiments. All the steps
required to run and evaluate the pipeline are described in this
document and the repository READMEs.

A.2 Artifact check-list (meta-information)
• Program: WEBGRAPH (sources included), Forked

OpenWPM (link to repo included)

• Data set: Sample crawl of 100 sites to test the pipeline.
SQLite and LDB databases (included in the docker im-
age). Google Drive link to datasets form a 10k website
crawl for further evaluation.

• Run-time environment: The project has been run and
tested on Ubuntu 18.04. For the setup, you need to have
python3, miniconda, binutils, pip, gcc and g++ installed.
All requirements are outlined in the repository. We also
provide a Docker image with all the dependencies in-
stalled.

• Hardware: Having a pod on a Kubernetes cluster is
preferable but not necessary due to necessity to stay
running for long periods of time.

• Execution: During the crawl, the user should use the
openwpm virtual environment created during the instal-
lation of OpenWPM.

• Metrics: Classification metrics (accuracy / precision /
recall /F1-score / feature importances).

• Output: The crawl outputs SQLite and LDB databases.
The WEBGRAPH pipeline takes in the crawl output, and
outputs three csv files: graph.csv, features.csv and la-
belled.csv (the details of the files are outlined in the
code-base). The classification task outputs a log for the

metric statistics in a report file. The robustness evalua-
tion task generates CSV graph files that can be fed into
a trained model, and information about classification
switches caused by the mutation.

• Experiments: Scripts and instructions to fully repro-
duce the paper’s results are provided in the artifact
README files.

• How much disk space required (approximately)?:
The code-base size is around 18.5 MB. The output size
varies depending on the number of websites crawled
(around 3-4 MB per website on average). The input
database size varies also depending on the number of
crawls (around 4.5 MB per website on average).

• How much time is needed to prepare workflow (ap-
proximately)?: The setup of the repository code and
the environment should take around 20 to 45 minutes.
The crawling time depends on the number of websites
(from hours to days). In case you want to accelerate the
setup time, you can use the provided docker image with
a pre-built project.

• How much time is needed to complete experiments
(approximately)?: The total pipeline time depends on
the number of websites being analyzed (hours to days
approximately). Our tests show that on average, WEB-
GRAPH takes 0.72 seconds to build the graph, 15 sec-
onds to extract features, and 0.25 seconds to train and
test each website. The structure robustness experiments
use the WEBGRAPH workflow, but perform graph build-
ing and training at every iteration, so the time increases
accordingly.

• Publicly available?: Yes, on https://github.com/s
pring-epfl/WebGraph

• Code licenses (if publicly available)?: MIT

• Archived (explicitly provide DOI or stable ref-
erence)?: https://github.com/spring-epfl/WebG
raph/releases/tag/usenix-artifacts-final

A.3 Description
A.3.1 How to access

The source code is available as a stable tag on GitHub at
the following URL: https://github.com/spring-epfl/
WebGraph/releases/tag/usenix-artifacts-final. To
access it, you can either download the zipped source code or
clone the repository.

We also provide two docker images with all the dependen-
cies installed to avoid the setup phase. The image details are
as follows:

https://github.com/spring-epfl/WebGraph
https://github.com/spring-epfl/WebGraph
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final
https://github.com/spring-epfl/WebGraph/releases/tag/usenix-artifacts-final


• WEBGRAPH image: Available at https://hub.do
cker.com/r/springepfl/webgraph. This image con-
tains all the dependencies and the code, and can be used
to run the entire pipeline.

• WEBGRAPH-demo image: https://hub.docker.c
om/r/springepfl/webgraph-demo. In addition to all
the dependencies and code, this image contains a
database of 100 sites (crawled using OpenWPM). The
image can be used to work with some test data.

Finally, we provide a Google Drive link with a dataset from
a large crawl of 10k websites to evaluate the classifier. The
dataset consist of features and labels for different feature con-
figurations of AdGraph and WEBGRAPH. The dataset can be
used to replicate all the results of Table 2 in the paper. Link to
the dataset: https://drive.google.com/drive/folders
/1nDH74p9tLVLvm62DfrsxcO7mraWAWiZa?usp=sharing.

A.3.2 Hardware dependencies

The code is meant to be run on Ubuntu 18.04 with the depen-
dencies mentioned in section A.2. We recommend running
the code on a server instance with a fast access to the Internet
to accelerate computations. The code-base size is around 18.5
MB. The dataset size can span from 400 MB to several GB
depending on the number of crawled websites. We provide a
sample dataset of around 100 sites (400 MB).

A.3.3 Software dependencies

• Custom OpenWPM: If you intend to run crawls
on your own, you need to download a custom Open-
WPM tool from this URL: https://github.com/san
drasiby/OpenWPM/tree/webgraph. The installation
instructions can be found in the README section of
the repository. A sample crawl is included in the WE-
BGRAPH code-base; you can copy it and run it in the
OpenWPM code base. Further instructions are included
in the README section of the repository. For conve-
nience, OpenWPM is also installed in the WEBGRAPH
Docker image.

• Docker: If you opt to use the Docker image, you need
to install Docker. After that, you can launch a Docker
container using the image and run the experiments in the
container.

A.3.4 Data sets

We include a sample dataset in the artifact. Additionally, you
can crawl your own dataset using the custom OpenWPM tool
following the instructions in the README.

A.3.5 Models

While we do not include a model in the artifact, the dataset
on Google Drive can be used to build a model.

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
• Installing locally on Ubuntu: Initially you need to

setup the environment as described above. Next, fol-
low the instructions in the OpenWPM README to
download and install the OpenWPM tool-set. Finally,
download the WEBGRAPH code-base and follow the
instructions in the README to setup the project and
run the various evaluation tasks.

• Using the Docker container: We provide a pre-built
Docker image that you can load in a docker environment
and start running the experiments immediately.

A.5 Experiment workflow
There are two workflows in the artifact. The main workflow
is the WEBGRAPH process. This process consists of crawl-
ing sites, building their graph representation, and training a
classifier based on features extracted from the graph represen-
tations. The second workflow handles the robustness experi-
ments (Section 3 and Section 5 of the paper). This workflow
uses the graphs generated by the WEBGRAPH process, and
performs different types of mutations in order to evade the
classifier. We perform two types of mutations – content muta-
tion (Section 3 in paper) and structure mutation (Section 5 in
paper). We describe the workflows below:

• WEBGRAPH:

1. Gather crawl data, either using OpenWPM, or the
sample database we provide: To run a crawl with
OpenWPM, follow the instructions on the WEB-
GRAPH repository README to install and activate
the environment for OpenWPM. Then, update the
script demo.py in the OpenWPM codebase to feed
in the list of sites you want to crawl, and run the
script. The crawl process results in a datadir di-
rectory containing the output files of the crawl.

2. Build graph representations, and extract features
and labels: Edit the file in the WEBGRAPH reposi-
tory, features.yaml to select the feature set that
you want to extract. Run the script code/run.py.
The README contains information on the argu-
ments accepted by the script. This script first reads
in the OpenWPM output files and creates graph

https://hub.docker.com/r/springepfl/webgraph
https://hub.docker.com/r/springepfl/webgraph
https://hub.docker.com/r/springepfl/webgraph-demo
https://hub.docker.com/r/springepfl/webgraph-demo
https://drive.google.com/drive/folders/1nDH74p9tLVLvm62DfrsxcO7mraWAWiZa?usp=sharing
https://drive.google.com/drive/folders/1nDH74p9tLVLvm62DfrsxcO7mraWAWiZa?usp=sharing
https://github.com/sandrasiby/OpenWPM/tree/webgraph
https://github.com/sandrasiby/OpenWPM/tree/webgraph


representations of each site that we crawled. It then
extracts the feature representations based on the
parameters provided in features.yaml. Then , it
extracts labels for each node in the graph repre-
sentation using filter-lists. The output of the script
is three CSV files: a graph representation file, a
features file, a labels file.

3. Train the classifier based on the features
and labels files, and get the classifier evalu-
ation reports. Run the classification process
(code/classification/classify.py) to per-
form 10-fold cross-validation. This consists of
classifier metrics (accuracy, precision, recall), the
ground truth and predicted labels of the classifier,
and feature importances.

• Robustness (content mutation):

1. Run the WEBGRAPH workflow to obtain graph
files and classifier predictions. Use the argument
−−save_model when running classification so as
to have a trained model against which the mutation
attacks can be run.

2. For the sites that you want to perform content
mutation on, run code/run.py to generate the
graphs/features/labels.

3. Get original classifier predictions by running
code/classification/classify_with_model
.py

4. Run robustness/content_mutation/content_
mutation.py. The README in the folder de-
scribes the inputs required for the script. Running
the script yields a new graph file with content
mutation applied on the graph nodes. This can
be fed as input to feature extraction and labelling
(code/run_extraction.py) and then to the
trained classifier model to evaluate performance
on mutated data.

5. Structure mutation will yield an output file indicat-
ing how many classifier predictions (on adversarial
and non-adversarial nodes) switched as a result of
the mutation. This file helps analyze the impact of
the mutation on the adversary’s performance.

• Robustness (structure mutation):

1. Run the WEBGRAPH workflow to obtain graph
files and classifier predictions. Use the argument
−−save_model when running classification so as
to have a trained model against which the mutation
attacks can be run.

2. Run robustness/structure_mutation/greedy
_mutation.py (the README in the folder pro-
vides the instructions on what to adjust in the

config file for the script). This will perform the
structure mutation.

3. Structure mutation will yield an output file,
diff_stats, indicating how many classifier pre-
dictions (on adversarial and non-adversarial nodes)
switched as a result of the mutation. This file
helps analyze the impact of the mutation on the
adversary’s performance. The output file called
overall_stats gives you an overview of how
many nodes originally had to be flipped. The suc-
cess rate and the collateral damage can be calcu-
lated from these output files, as described in Sec
5.3 (page 10/11) of the paper.

We provide a detailed explanation of how to run these
workflows in the repository READMEs.

A.6 Evaluation and expected results
The main tool in the paper is WEBGRAPH, which classifies
URLs on sites as advertising and tracking (ATS) or benign
(non-ATS). WEBGRAPH performs comparably to other clas-
sifiers despite not using brittle content features, due to the
addition of a new set of features, flow, based on ATS behavior.
Our artifact enables a user to run the WEBGRAPH pipeline:
from the crawl to the graph creation and feature extraction to
the classifier training. We provide a test dataset of 100 crawled
sites to analyze how the pipeline works. At the same time,
this test dataset is too small to validate the performance of the
classifier. In order to facilitate verification of WEBGRAPH’s
performance, we also provide feature and labels from a crawl
of 10,000 sites. These can be fed into the classifier to obtain
results, and used to train a model that can be used in further
experiments (such as the robustness workflow). We opt to
provide the processed features and labels for two reasons.
First, the raw crawl database of 10,000 sites would be large
(in the order of several GB) without necessarily providing
much value for evaluation. Second, the processed features
and labels can be used for other experiments (an evaluator
can use as many or as few sites as they desire to train the
model). We note that these files themselves are ≈ 600MB.
The datasets provided can also be used to replicate the results
shown in Table 2 of the paper, but running the classification
process (Step 3 of WEBGRAPH workflow) with the feature
and labels file.

The paper performs many experiments related to content
and structure mutations. The artifact, therefore, also provides
code to generate these mutations. A user can run the muta-
tions on graphs generated from either their own crawled data,
or on the data that we provide. The READMEs in the robust-
ness sections of the artifact include information on what the
expected output of the mutations are. The code also allows
a user to run the entire pipeline in two modes: WEBGRAPH
and AdGraph. The content mutation robustness workflow, run



with AdGraph mode, can be used to replicate the results of
Section 3. The content and structure mutation workflows, run
with WEBGRAPH mode, can be used to generate the results
of Section 5. Note that in order to generate the results close
to the values in the paper, you would have to run crawls with
10,000 sites (for the content mutation experiments) and 100
sites (for the structure mutations experiments).

A.7 Experiment customization
The workflows can be customized as follows:

• WEBGRAPH:

1. The script to run the experiment, code/run.py,
takes in an argument, −−mode, which allows you
to specify the system you want to run: AdGraph or
WEBGRAPH.

2. The feature extraction process can be modified to
use different categories and types of features, as
required. In the default version, we do not use con-
tent features (which are used in other tools such as
AdGraph), but content features can be extracted by
modifying code/features.yaml. New features
can also be added to the classifier.

3. The labelling process can be modified to include
additional filter lists.

• Robustness:

1. The content mutation process can be modified to
mutate the URLs in different ways. The process
also offers the option to perform the two scenarios
described in Section 3 (third party random muta-
tion, and third party as a subdomain of the first
party).

2. The structure mutation process currently offers
four types of mutations that the user can choose
from. This can be updated as required.

3. The structure mutation process currently calculates
desired and undesired switches for an adversary as
described in the paper. This definition can be mod-
ified in the code to account for other adversarial
goals.

We provide descriptions of the various customization pa-
rameters in the repository READMEs.

A.8 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version


