
A Artifact Appendix
A.1 Abstract
This artifact includes the gem5 simulator and McPAT files
that are used for performance impact and area/power es-
timation for the paper "Composable Cachelets: Protecting
Enclaves from Cache Side-Channel Attacks". The aforemen-
tioned frameworks will generate result files which we explain
how to extract the relevant results in the appendix. In order
to provide the artifact with minimal dependencies, we have
provided the reviewers with a safe remote access to a server
that contains all of the relevant dependencies, benchmarks,
executables, source code and scripts, all of which can be in-
spected, overwritten and executed.

A.2 Artifact check-list (meta-information)
All of the following material in the checklist is included in
the server. There is nothing to be downloaded. We are going
to be mentioning them for context.

• Algorithm: The main algorithms we introduce are the allo-
cation and the remapping code in the gem5 simulator. The
bulk of our cachelet allocation algorithm is contained at
gem5/src/mem/cache/tags/indexing_policies. In this
directory, we have a base class in base.cc where the allo-
cation and class constructor reside. For the remapping algo-
rithm, we modify set_associative.cc where in the enclave
mode, we emulate way deflection by returning the ways allo-
cated for the enclaves to the replacement policy (in function
getPossibleEntries). For the indexes of the cache we use
the function named extractSet where we replace the higher
bits with the VPT entry.

• Program: In the server, we include the following benchmarks
(with corresponding versions) for your access:

– SPEC2017 - 1.0.2 - private

– PARSEC - 3.0-beta-20150206 - public

– MiBench - 1.0 - public

– Post-Quantum Cryptography (PQC) programs: BIG
QUAKE, CRYSTALS-KYBER, CFPKM, Compact-
LWE, DAGS - N/A - public

• Compilation: During the evaluation process, you are not
obligated to compile anything. If desired, we have included
compilation steps for gem5 in the Section A.8 in the appendix.
The artifact already possesses every dependency for the compi-
lation which are the same as the baseline gem5 CPU simulator.

• Transformations: There are no transformation tools required.

• Binary: The main binary file for the simulations is already
pre-generated (gem5/build/X86/gem5.opt) on the platform.
The McPAT simulators used in our evaluation also have pre-
compiled binaries in area_power_estim/mcpat and area_
power_estim/mcpat_extra_tag. The purposes of the two
versions of McPAT are described in Section A.6.2.

• Run-time environment: On the reviewer’s side, any OS that
has SSH can run remote access the environment we provide
and run all simulations. For context, the environment on the
server is Debian 8.

• Hardware: We use the gem5 CPU simulator, an open source
architecture simulator which is already included in the server
(we don’t require any installation or any extra hardware).

• Execution: The only condition we have is the establishment
of the SSH connection to our platform. Simulations take few
hours to few days depending on the experiment.

• Security, privacy, and ethical concerns: There are no security
implications on the reviewer-side.

• Metrics: For performance metrics, we consider normalized
Instructions Per Cycle (IPC). As for area/power estimation,
we consider mm2 for area and Watts for power generated by
McPAT, an integrated power, area, and timing modeling frame-
work for various architectures.

• Output: The files and directories that contain the metrics are
explained in detail in Section A.6.

• Experiments: The experimentation process is explained in
detail in Section A.5 .

• How much disk space required (approximately)?: While
there’s no requirement on the disk-space on the reviewer’s
machine, the platform memory has to be kept track of.

• How much time is needed to prepare workflow (approxi-
mately)?: No time needed to prepare the workflow.

• How much time is needed to complete experiments (ap-
proximately)?: Depending on the experiments, it can take a
few hours to 3 days where full system simulations (like PAR-
SEC experiments) take days and system emulation of security
benchmarks (like PQC and MiBench security programs). The
McPAT estimation experiments take a few seconds to com-
plete.

• Publicly available (explicitly provide evolving version ref-
erence)?: No.

• Code licenses (if publicly available)?: No.

• Data licenses (if publicly available)?: No.

• Workflow frameworks used?: We use custom scripts that
spawn shell commands to be run concurrently. The McPAT
simulations are run manually from the command line.

• Archived (explicitly provide DOI or stable reference)?: No.

A.3 Description
A.3.1 How to access

N/A

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

The only software required is Secure SHell (SSH) which we are
going to use to connect to the artifact platform.



A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

A.4 Installation
We do not require any reviewer-side installation other than SSH
(please refer to online sources for proper installation). The artifact is
going to be accessed remotely. One can access our servers through:

ssh <username>@<dns_tag>

where the username, the DNS tag and the password are granted
in the submission.

We use our platform as the artifact testing environment. First
off, the reviewer is going to access the server (required information
provided in artifact submission form).

Once accessed, we highly recommend that you create a tmux
session so that in case of an unintended disconnect or any other dis-
turbance, the experiment process can keep running independent from
the remote user. To create a tmux session, the following command
line can be used:

tmux new -s <name_of_session>

We have already created a session named reviewer. In order for
a user to attach to a session, the following command line can be
used:

tmux a -t <name_of_session>

To detach from a session, press "Ctrl+B" and then "Q" on your
keyboard; this will send you back to the main terminal interface.
When attached to a session, the user will run terminal command to
run the experiments we set up. This way, if you run an experiment
on the tmux session, it will keep running on the server even when
you disconnect.

For PARSEC experiments, we use gem5’s full system simulation
for multi-threaded applications. We have already prepared the disk
image and the kernel image for this simulation. The gem5 version we
use requires the path to the simulator as an environment variable; so
after each connection or session creation where a PARSEC-related
simulation is going to be run, please set the environment variable
M5_PATH as:

export M5_PATH=/home/reviewer/gem5

Keep in mind that you don’t need to do this constantly if your are
running on a prepared tmux session.

A.5 Experiment workflow
We have 2 different simulation environments. The first one is the
performance results gathered from the gem5 CPU simulator which
we modified to emulate Composable Cachelets.

A.5.1 Performance Results from the gem5 Simulator

Experiment Scripts Explained We have three Python
scripts for each benchmark suite: runspec.py. runmi.py, and
runparsec.py. These scripts create simulation threads for vari-
ous configurations by calling the gem5 binary (gem5.opt). On top
of that, for non-enclave simulations, we use runnonenc.py.

gem5 is modified to have extra convenience options to the base-
line such as l3_vpt_size that defines the number of VPT entries.
Another example is l3_cachelet_assoc which defines the associa-
tivity of allocated cachelets. The user will not be interacting with
these options directly, but it is important to note.

SPEC2017 Enclave Experiments For SPEC2017 benchmark
suite evaluations, we use runspec.py. It tests 14 benchmarks from
the suite and tests one 10 cachelet configurations along with the
baseline configuration. The script has 3 mandatory options which
are real_insts, warmup_insts, and jobs where they denote the
number of real instructions (instruction considered for performance
evaluation), number of instructions considered as initialization (these
are ignored) and number of concurrent experiments. The platform
we provide has 48 cores and all of the experiments are required, we
recommend that you initialize -jobs as 40. Having said that, to run
1 billion real instruction and after 1 billion warm up instructions
with 40 concurrent jobs, the following command would be executed:

python3 runspec.py --real_insts=1000000000
--warmup_insts=1000000000 --jobs=40

Unfortunately, we cannot support further customization. For spec
benchmarks. Please refer to the source code of the scripts for further
customization.

Security Enclave Experiments For security benchmarks
(MiBench and PQC), we have runmi.py where it takes only the
same jobs argument. This script runs 4 configurations (including
the baseline) per 8 benchmarks we consider.

The following command is an example of security benchmark
experiment with 40 concurrent jobs:

python3 runmi.py --jobs=40

PARSEC Enclave Experiments Finally, for PARSEC bench-
marks, we have a similar option layout for the script (runparsec.py
in this case) to the security benchmarks. However, since PARSEC
experiments are done in full system simulation we recommend 3
concurrent jobs at maximum. There is only 1 configuration per bench-
mark, and we consider 5 of them. To run PARSEC benchmarks, the
following command line can be run:

python3 runparsec.py --jobs=2

SPEC2017 Non-Enclave Experiments For non-enclave ex-
periments, we considered 5 SPEC benchmarks. The script we use
for these experiments has the same option layout as runspec.py.
To run these experiments:

python3 runnonenc.py --real_insts=1000000000
--warmup_insts=1000000000 --jobs=40

is going to be used as the command.



A.5.2 Area and Power Estimation from McPAT

The files involved in this experimental workflow are located in
/home/reviewer/area_power_estim/, under the following sub-
directories:

• mcpat: contains the unmodified mcpat simulator source code
and binaries from the public git repository.

• mcpat_extra_tag: contains a version of the mcpat source
and binaries that we modified to simulate additional cache
tags. The source differs from the baseline mcpat only in
the /cacti/const.h header file, where the value of the
EXTRA_TAG_BITS variable was changed from 5 to 9.

• cc_descriptions: contains the architecture descriptions used
to run the simulations.

• cc_mcpat_final_results: contains the area/power result
files from which we extracted the estimates.

We estimated the area and power overheads for major CC com-
ponents (the VPT, CFL, and extended cache tags) using the mcpat
computer architecture simulator. We describe the configurations used
for our simulations below. The results of the simulations, and the
procedures for running them, are presented in Section A.6.2

Baseline processor: As a point of comparison for our area and
power results, we took one of the default processor specification
files (Intel Xeon processor) provided with mcpat, and modified the
Caches, Register File, TLB, BTB, LSQ, ROB, and fetch/decode/is-
sue/commit width parameters to match the architecture used else-
where in our evaluations. This file is located at:

/home/reviewer/area_power_estim/cc_descriptions/
cc_base_processor.xml

VPT and CFL: We observed that the components VPT and
CFL components of CC are closely analogous to existing hardware
components simulated by McPAT. The VPT is comparable to
a register alias table (retirement RAT), while the CFL corre-
sponds to a register free list. Thus, we used the McPAT area
and power metrics for a Integer Retirement RAT and Free List
as our estimates for the area and power of the VPT and CFL,
respectively. When generating results for each component, we
configured the simulation so that the components would have
a similar size and organization to VPT and CFL described in
our paper:

• For the configuration that generated the VPT re-
sults (/home/reviewer/area_power_estim/cc_
descriptions/cc_single_issue_vpt.xml), we
specified 16 architectural registers and 64 physical
registers. The resulting RAT would be comparable to a
16-entry VPT in a CC system with 64 total cachelets.
Because a VPT does not require multiple write ports,
we also gave the processor a single instruction width, so
that the rename logic has a single write port.

• To obtain a 64-entry register free list (comparble to the
64-entry CFL assumed in our area/power evaluation),

we modified the baseline processor specification to have
64 physical registers. The configuration file used for
the CFL results was /home/reviewer/area_power_
estim/cc_descriptions/cc_free_list.xml

Extended Cache Tags: To estimate the area and power
overhead of the additional cache tag bits required by CC,
we changed the number of extra cache tag bits defined in
the McPAT source code. We then recompile the simulator.
Specifically, we edited the file

/home/reviewer/area_power_estim/mcpat_extra_tag/
cacti/const.h

to change the value of the EXTRA_TAG_BITS variable from 5
to 9, reflecting the number of extra tag bits needed to support
up to 16 cachelets per enclave. Using the baseline processor
configuration cc_base_processor.xml, we ran the simula-
tion with the modified and the unmodified versions of McPAT,
then took the difference between the total area and power
results for each simulation to determine the area and power
increase attributable to the the added tag bits.

A.6 Evaluation and expected results
A.6.1 Performance Results from the gem5 Simulator

After the simulation ends, gem5 generates output directo-
ries which contain the architecture parameters and results.
In these directories there are two important files, namely
config.ini (architectural parameters) and stats.txt (com-
putational metrics). stats.txt contains the IPC values that
we are going to inspect. The scripts we use generate such
output directories with names with the prefix m5out. Hence,
to extract the IPC values from any benchmark, we use grep
commands such as:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_*/stats.txt

To elaborate, this command will print out all of the IPC
results. Ideally we would like to specify the configuration or
the benchmark of the experiments we desire to examine. We
explain below how to extract IPC values from all experiments.

SPEC2017 Enclave Outputs To extract IPC values from
a specific benchmark (say deepsjeng), the following com-
mands should be run (baseline case first, other cases for the
latter):

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_deepsjeng_baseline/stats.txt

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_deepsjeng_enclave*/stats.txt



If we want to compare different benchmarks with the same
configuration (say 4 way 8 cachelets), the following command
should be run:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_*enclave_4_8/stats.txt

Security Enclave Outputs As an example, to extract IPC
from the aes benchmark, the following command should be
run:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_aes_encrypt*/stats.txt

MiBench related benchmarks’ (blowfish, sha and aes) di-
rectories are followed by an _encrypt suffix. PQC related
benchmarks do not have such suffixes. Thus, for instance,
getting IPC values from the benchmark BIG QUAKE is done
by:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_BIG_QUAKE*/stats.txt

PARSEC Enclave Outputs PARSEC benchmarks are
saved with a parsec_ prefix, so to extract results from the
benchmark blackscholes:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_parsec_blackscholes*/stats.txt

Non-Enclave Outputs Non-enclave experiments have
_nonenclave suffix. So, for inspecting omnetpp with 12
ways the following command should be used:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_omnetpp_nonenclave_12/stats.txt

So to check the same benchmark for all cases:

grep "switch_cpus_1.commit.committed_per_cycle::mean"
artifact_cc/m5out_omnetpp_nonenclave*/stats.txt

Expected Results For expected results, please refer to the
main paper where every detail is already discussed in detail.
Since we are using simulations, there might be slight differ-
ences to the results in the paper. However, the patterns the re-
viewers extract shall generate the same patterns as the ones in
the paper, even though the process is not fully-deterministic.

A.6.2 Area and Power Estimation from McPAT

Our area and power estimates indicated that the main CC
hardware components impose a modest overhead in terms of
processor area and power. Table 1 presents our results. Note
that the same results are in the submitted paper were rounded
to a different level of precision.

These results above were obtained as follows:

area mm2 (% base) peak W (% base) runtime W (% base)
Base arch 45.183 (100) 70.0737 (100) 35.1191 (100)

VPT 0.00042 (0.00093) 0.0022 (0.0031) 0.0066 (0.019)
VPT × 2 0.00084 (0.0019) 0.0044 (0.0063) 0.013 (0.037)

CFL 0.019 (0.042) 0.060 (0.085) 0.057 (0.16)
Tag bits 0.36 (0.80) 0.21 (0.29) 0.11 (0.33)

Table 1: Results of McPAT simulations of CC components.
Peak and runtime refer to peak dynamic and runtime dynamic,
Percentages are relative to the baseline architecture (Base
arch)

Baseline Architecture The area and power metrics for the
baseline architecture were obtained with the following com-
mand:

cd /home/reviewer/area_power_estim/mcpat
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_base_processor.xml > ../
cc_mcpat_final_results/cc_5_tag

The "Base arch" results shown in Table 1 come from the
"Processor" section of the output file.

VPT estimates The area and power metrics for the VPT
were obtained with the following command:

cd /home/reviewer/area_power_estim/mcpat
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_single_issue_vpt.xml > ../
cc_mcpat_final_results/cc_single_issue_vpt_res.
txt

The "VPT" results shown in Table 1 come from the "Int Retire
RAT" section of the output file. Note that in the paper, we
multiply the results by two to reflect the presence of two VPTs
in a two core processor.

CFL estimates The area and power metrics for the CFL
were obtained with the following command:

cd /home/reviewer/area_power_estim/mcpat
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_free_list.xml > ../cc_mcpat_final_results/
free_list_as_64_entry_cfl.xml

The "CFL" results shown in Table 1 come from the "Free
List" section of the output file.

Tag bit overheads The tag bit overheads were obtained
with the following command:

cd /home/reviewer/area_power_estim/mcpat_extra_tag
./mcpat -print_level 5 -infile ../cc_descriptions/

cc_base_processor.xml > ../
cc_mcpat_final_results/cc_9_tag

The "Tag bits" results shown in Table 1 are the difference be-
tween the values in the "Processor" section of the cc_9_tag
output file and the corresponding values in the baseline
cc_5_tag file.



A.7 Experiment customization
We provide customization in terms of number of concurrent
jobs and instruction numbers (when necessary). Yet, Due to
the sheer number of the considered benchmarks, we cannot
provide extensive customization for benchmark specification.
However, if some benchmarks are not needed by the reviewers,
they can be commented out.

A.8 Notes
If desired, the reviewers can compile gem5 (which is not
necessary). To construct gem5, after entering the gem5 subdi-
rectory by:

cd gem5

the following command should be used:

python2 ‘which scons‘ build/X86/gem5.opt -j 40

Unless any change is applied to gem5, this command will
print the message:

scons: ‘build/X86/gem5.opt’ is up to date.

Also, please make sure that only one reviewer runs a spe-
cific experiment at a time to prevent interference, since afore-
mentioned tools/frameworks overwrite namesake files/direc-
tories.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Performance Results from the gem5 Simulator
	Area and Power Estimation from McPAT

	Evaluation and expected results
	Performance Results from the gem5 Simulator
	Area and Power Estimation from McPAT

	Experiment customization
	Notes
	Version


