
A Artifact Appendix

A.1 Abstract
Using RETBleed, an unprivileged user can leak arbitrary
memory from the system. The vulnerable systems are listed in
Table 1 in the paper. RETBleed has an offline phase, where ex-
ploitation primitives are discovered by our framework. We ran
the framework, designed exploits and proof of concept code
on Ubuntu 5.8.0-63-generic. To match our results closely,
an Intel i7-8700K (Coffee Lake) and an AMD EPYC 7252
(Zen2) are recommended. 16 GiB of RAM is recommended.
To run our framework on the entire test suite (optional), we
recommend 40 GiB of free disk space. However, we have in-
cluded example output from the framework with particularly
huge files omitted, which is 1-2 GiB and can be inspected
instead.

We provide a snapshot of the current RETBleed repository,
which hosts the majority of code used throughout the project.
The repository is public, and detailed instructions are found
in the README.md files inside the git repository.

A.2 Artifact check-list (meta-information)
• Binary: A Linux image is included to test the gadget scanner.

Source code is included to build the other binaries used by the
framework, PoCs, kernel modules and end-to-end exploits.

• Run-time environment: Ubuntu 20.04.3 LTS (Focal Fossa)
with linux-image-5.8.0-63-generic. Most experiments
are designed to run on bare-metal, not on a VM.

• Hardware: Intel Core generations 6–8; AMD Zen, Zen+ and
Zen 2

• Security, privacy, and ethical concerns: Responsible disclo-
sure ended on 12 July 2022.

• Experiments:

– ./retbleed_zen/pocs/ret_bti finds the patterns
that cause BTB collisions.

– ./retbleed_zen/pocs/cp_bti shows that collisions
happen across.

– ./retbleed_intel/pocs/ret_bti shows that returns
go via BTB.

– ./retbleed_intel/pocs/cp_bti shows that we can
train across kernel returns in user space.

– ./rsb_depth_check RSB use on AMD and Intel. For
Intel, it also indicates that some other “near branch” pre-
diction mechanism takes place.

– ./zen_ras_vs_btb/ is illustrated in Figure 5. It shows
that Return Address Stack (RAS, aka RSB) is not used
on Zen 2 when there’s a BTB entry. To evaluate Zen(+),
BTI_PATTERN must be manually set.

– ./ret_finder/ constitutes the part of framework to
detect vulnerable return instructions in the kernel.

– ./gadget_scanner/ was used to discover disclosure
gadgets.

– ./bhb_generate/ was used to trace taken branches pre-
ceding a vulnerable return in a kernel running inside a
VM.

• How much disk space required (approximately)?: 300 MiB.
40 GiB to reproduce our framework output.

• How much time is needed to prepare workflow (approxi-
mately)?: Less than 1 hour.

• How much time is needed to complete experiments (approx-
imately)?: Up to 12 hours.

• Publicly available (explicitly provide evolving ver-
sion reference)?: https://github.com/comsec-group/
retbleed/.

• Workflow frameworks used?: git, linux-test-project,
BCC/eBPF, ftrace

• Archived: https://github.com/comsec-group/
retbleed/releases/tag/sec22-artifact-final

A.3 Description
A.3.1 How to access

Clone using git, git clone
https://github.com/comsec-group/retbleed.git. Also
clone submodules, git submodule update -init

A.3.2 Hardware dependencies

Intel i7-8700K (Coffee Lake) and AMD EPYC 7252 (Zen 2) or
similar. We were evaluating all experiments and exploits on bare-
metal hardware. Running in a VM may pose unexpected challenges.

A.3.3 Software dependencies

Ubuntu focal, linux-image-5.8.0-63-generic, clang, python3, bcc,
bpfcc-tools, pytest, pyelftools

A.4 Installation
Instructions available in README.md files. See repository for de-
tails. Software dependencies can be installed using apt-get and
pip3. Linux test project included as a submodule that can be cloned
using git submodule update -init from the repository

A.5 Experiment workflow
Instructions available in README.md files. See repository.

A.6 Evaluation and expected results
• Reverse engineering of return instruction behavior. Several

experiments are included that reverse engineer return behavior.

• Framework that finds vulnerable return instructions. We
include the framework that finds these. It should result in the
numbers from Figure 11.

https://github.com/comsec-group/retbleed/
https://github.com/comsec-group/retbleed/
https://github.com/comsec-group/retbleed/releases/tag/sec22-artifact-final
https://github.com/comsec-group/retbleed/releases/tag/sec22-artifact-final


• Poisoning kernel returns from an unprivileged process. Our
PoCs and exploits all do this.

• Leaking arbitrary memory at 3.9 kB/s and 219 bytes/s on
AMD Zen2 and Intel Coffee Lake respectively. We provide
instructions in the repository for how to run these PoCs. We
also include exploits to leak /etc/shadow. Furthermore, we also
explain how we measure the leakage rate. The median the
leakage rate should closely match with the expected results.

A.7 Experiment customization
We clarify in the READMEs provided the cases where certain pre-
processor macros can/should be altered for additional results. For
example, to run rsb_depth_check on AMD, uncomment L11 in
ret_chain.c.

A.8 Notes
The documentation here is sparse, since everything written here
has already been provided in the artifact project itself. Please use
your own hardware. Should you not have access to hardware that is
similar to ours, please contact us.

A.9 Version
Based on the LaTeX template for Artifact Evaluation V20220119.


	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


