
A Artifact Appendix

A.1 Abstract
This artifact contains the C++ source code of our novel DP-
PIR protocol that we introduce in the paper. Our protocol
allows clients to privately query the contents of a remote
database, without revealing information about their query to
the service beyond a well-defined differentially private leak-
age. Unlike previous PIR protocols, DP-PIR amortizes queries
from independent clients leading to constant amortized server
and client side computation and communication complexity
when the query volume is sufficiently large with respect to
the size of the database.

Our artifact includes the code for the different entities of
our protocol. This includes the client(s) code, as well as the
two or more parties that constitute the service. In addition, the
artifact includes scripts to run the various experiments and
produce the plots and tables we show in the paper, including
the comparisons with existing three existing protocols: Check-
list, DPF, and SealPIR. Our implementation uses Google’s
Bazel build system, and includes Bazel ports for building the
three aforementioned baselines. We developed our implemen-
tation using Ubuntu 20.04 and g++-11. We will provide a
Docker container with all required dependencies by the arti-
fact submission deadline.

The primary purpose if this artifact is to (1) support the
claims of our paper about the efficacy of amortization with
DP-PIR compared to current state of the art protocols, and (2)
demonstrate how the performance of DP-PIR is governed by
the different application parameters. To that end, we designed
and ran several experiments that run our implementation or
the baselines with different parameters and report the total
service time taken to process the generated query loads. We
ran our experiments on AWS instances to mimic a realistic
setup where the different parties making up the protocol are
deployed over separate machines and communicate over real-
istic networks. Most experiments can be run locally without
AWS, except a couple of the larger data points that will most
likely run out of memory when all the parties are run on the
same local machine. We will provide detailed instructions
on how to run experiments locally or over AWS, and how to
interpret and plot the results by the deadline.

A.2 Artifact check-list (meta-information)
• Algorithm: This artifact provides an implementation of DP-

PIR, a new private information retrieval protocol.

• Compilation: We tested our artifact using G++-11. Our im-
plementation uses Google’s Bazel build system.

• Binary: No binaries are included. The protocol binary should
be build from the source code using Bazel in optimized mode.

• Run-time environment: We developed our artifact on Ubuntu
20.04. We will provide a docker container with all the relevant

dependencies.

• Run-time state: Our implementation, and especially the on-
line portion of our protocol, is extremely sensitive to network
bandwidth. In our experiments, we deployed our AWS in-
stances in a cluster placement group to minimize network costs.

• Execution: Each data point on any of the plots in the paper is
a separate running job spawned by our scripts. For the smaller
data points, the execution takes a few seconds, but for the larger
ones (e.g. 100M queries), it may take close to an hour.

• Security, privacy, and ethical concerns: There are no such
concerns.

• Metrics: We report the total service side execution time. Con-
cretely, this is the wall time between the first party/server in
the protocol receiving the last query in the batch, right before
processing of the batch starts, and the wall time at that same
server right after the batch has been processed, and before the
responses are sent to client(s). We report similar measurements
for the baselines as well.

• Output: The experiments produce log files for the different
parties, each file containing various debugging information
as well as time measurements. Our artifact includes scripts
that automatically process these files to extract the relevant
information, and produce plots similar to the ones shown in
the paper.

• Experiments: Our experiments are run via an “orchestrator”
command line program provided in the artifact. This orchestra-
tor is a simple nodejs web server that workers (local or AWS)
ping for jobs. Aside from running these workers once, eval-
uators need only interact with the orchestrator via its control
interface, e.g. they can use command ‘load figure1‘ to direct
the orchestrator to load and run the experiments needed to
produce figure 1 in the paper.. The orchestrator is responsible
for translating input commands into jobs, assigning them to
workers, and tracking the progress of these workers including
acquiring their output files.

• How much time is needed to complete experiments: In our
setup, the experiments require about 14 hours of mostly passive
running time to produce the results shown in the paper.

• Publicly available: at https://github.com/multiparty/
DP-PIR/tree/usenix2022.

• Code licenses: MIT

A.3 Description
A.3.1 How to access

Clone this repository https://github.com/multiparty/DP-
PIR/tree/usenix2022.

A.3.2 Hardware dependencies

We ran our experiments using one r4.xlarge AWS instance per
server/party. These instances have 2 vCPUs and 30.5GB RAM. If
run locally, more memory will be required to run the larger experi-
ments, since all the parties (and thus all their memory) will be run

https://github.com/multiparty/DP-PIR/tree/usenix2022
https://github.com/multiparty/DP-PIR/tree/usenix2022
https://github.com/multiparty/DP-PIR/tree/usenix2022
https://github.com/multiparty/DP-PIR/tree/usenix2022

on the same machine. In such cases, we recommend that proportion-
ally smaller experiments are run to fit the hardware constraints. The
artifact documentation includes more details on this.

A.4 Installation
We provide a Docker container that includes all require dependencies.
Instructions on building and running this container are provided in
the artifact. We also provide instructions on how to deploy and run
the experiments locally or via AWS.

A.5 Experiment workflow
To simplify running experiments, we provide an orchestrator pro-
gram included in the artifact. The orchestrator takes care of config-
uring the protocol per the experiment parameters. The orchestrator
is ideal for experiments with many parties or parallel machines, as
it automatically assigns the experiment tasks to the workers and
monitors their progress.

At a high level, our workflow with the orchestrator follows these
steps:

1. The orchestrator application is run via the command line.

2. Several workers are spawned, either as AWS instances or lo-
cally via the provided scripts. As many workers are needed
as the sum of parties and clients. For most experiments in the
paper, this translates to 3 workers needed for 2 parties and 1
client.

3. The workers execute background daemon scripts that periodi-
cally ping the orchestrator to request jobs or report progress.

4. Evaluators issue commands to the orchestrator to run instances
of our protocol with specific parameters. All the parameters for
all of the results in the paper are packaged inside the artifact
and can be loaded by name (e.g. ‘load figure1‘). However,
evaluators can also run experiments with different parameters,
which they need to specify to the orchestrator via an interactive
dialog.

5. The workers receive the jobs corresponding to the different
parameters issued by the evaluator. Workers run these jobs,
which include running various steps of the protocols, such
as creating queries, shuffling queries, and exchanging various
messages over the network. Whenever a worker finishes a job,
it reports that to the orchestrator along with the output file,
which include the measured computation time.

6. The orchestrator notifies evaluators whenever workers and
experiments are completed. The evaluators can then run the
plotting script provided in the artifact to plot the results similar
to the plots in our paper.

It is possible to run experiments directly using the protocol imple-
mentation without relying on the orchestrator. Consult the artifact
documentation for more details.

A.6 Evaluation and expected results
The main goal of this artifact is to produce plots showing the per-
formance of DP-PIR as a function of the different application and
setup parameters. Specifically, we are interested in demonstrating

(1) how the performance of DP-PIR compares to that of existing pro-
tocols, and (2) how the performance of DP-PIR scales with different
parameters.

With our protocol, we have the following parameters:

1. The database size: the number of rows in the database being
privately queried. In our figures, this size ranges between 2.5
million rows for the larger experiments and 100K or 10K rows
for the smaller ones.

2. The number of queries: how many queries to process via the
protocol. This can range between several thousands and hun-
dreds of millions. Note: on setups with limited RAM, the arti-
fact will not be able to handle the larger query numbers as it
will run out of memory.

3. The number of parties: how many parties constitute the service.
Our protocol requires at least two parties and tolerates up to
n−1 malicious and colluding parties. This is almost always
set to 2 in our experiments, except figure 5 where it ranges
between 2 and 5.

4. Parallelism: how many instances/workers/servers does a party
possess. The more servers here the faster the protocol will run
as the queries get split among these servers. We almost always
set this to 1 except in table 2.

5. ε and δ: the differential privacy parameters governing how
much leakage is tolerated. Smaller parameters imply more
privacy at the cost of performance.

6. The mode: whether we are measuring the offline or online
portions of our protocol.

When creating a job, the orchestrator will interactively request
these parameters from the evaluators. Alternatively, the orchestrator
can be instructed to load one or more bundled experiment which
specifies all these parameters in accordance to the paper.

The main expected result here is a confirmation of the efficacy
of our protocol and its amortization. Specifically, that our protocol
becomes significantly faster than existing systems as the number
of queries approaches or exceeds the database size. This is demon-
strated by producing a plot similar to figure 1 in the paper: all the
parameters are fixed (in the paper: DB size = 2.5M, parties = 2, par-
allelism = 1, ε = 0.1, δ = 10−6), while varying the number of queries
(e.g. from 104 to 108). For each number of queries, we run both our
online protocol and an existing PIR protocol (e.g. Checklist), and
plot the reported runtimes as a function of the number of queries.
We shows our results from the paper for demonstration below.

104 105 106 107 108 109

Queries

100

102

104

C
om

pl
et

io
n

Ti
m

e
(s

ec
)

Checklist
DP-PIR

Figure 1: Checklist and DP-PIR Total completion time (y-
axis, logscale) for varying number of queries (x-axis, logscale)
against a 2.5M database

The exact numbers shown in the plot are setup dependent, and
may significantly vary between setups. Our protocol is extremely
susceptible to any changes in network bandwidth and latency. How-
ever, we expect to see three trends: (1) The total runtime of checklist
is proportional to O(|queries|×

√
|DB size|. (2) DP-PIR runtime ini-

tially is constant and does not seem to grow much with the number
of queries. As the number of queries becomes similar in magnitude
to the database size, our performance starts to grow with the number
of queries. (3) Our protocol is (much) slower than Checklist for few
queries, and much faster than Checklist for huge number of queries.
Checklist’s graph crosses over DP-PIR’s somewhere in the middle,
for a number of queries roughly in O(|DB size|). A reasonable num-
ber of queries would be between 0.5 to 2.5 times the database size,
depending on the setup.

If these three trends are observed, then the result match our expec-
tations and confirms our claims about the performance of DP-PIR
and its amortization. If either of them is absent, specifically, if DP-
PIR remains slower than or comparative to Checklist even as the
number of queries becomes large, that would disprove our perfor-
mance and efficiency claims.

Another expected result is to demonstrate that DP-PIR scales
with the different parameters as expected. Specifically, that it scales
linearly in the number of queries and database size, for both online
and offline stages, scales super-linearly in the number of parties in the
offline stage, and exhibits close to linear speedups when additional
parallel resources are used. These can be validated by fixing all the
parameters except the parameter under investigation, and plotting the
performance of DP-PIR as a function of that singular parameter. The
produced plots should exhibit similar trends to the plots in section 7
of the paper.

A.7 Version
Based on the LaTeX template for Artifact Evaluation V20220119.

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Version

