
A Artifact Appendix

A.1 Abstract
TLS-Anvil is a test suite that evaluates the RFC compliance of
Transport Layer Security (TLS) libraries using combinatorial
testing (CT). To facilitate the automated analysis of multiple
TLS libraries, we additionally provide the TLS-Docker-Lib
project, which contains around 700 images for various ver-
sions of 22 TLS libraries. The test results composed by TLS-
Anvil for the libraries BearSSL, BoringSSL, Botan, GnuTLS,
LibreSSL, MatrixSSL, mbed TLS, NSS, OpenSSL, Rustls,
s2n, tlslite-ng, and wolfSSL are the foundation of the evalua-
tion in our paper. The results can be reproduced by running
TLS-Anvil against local installations or docker images of the
libraries. TLS-Anvil and its dependencies are written in Java,
specifically for Java 11. Hardware requirements depend on
the desired extent of the combinatorial testing (test strength).
16 GB of RAM are sufficient to test each library with strength
three as we did for the paper.

A.2 Artifact check-list (meta-information)
• Compilation: TLS-Anvil and its dependencies can be built

using Maven with Java 11.

• Binary: We provide executable jars built for Java 11 for TLS-
Anvil here . TLS-Anvil is also provided as Docker image that
is distributed using GitHub Packages. The TLS server/clients
that we evaluated with TLS-Anvil are part of the TLS-Docker-
Library. Those are designed as Docker images as well, but not
available yet. However, the images can be built locally.

• Data set: We provide our raw test results to be used with the
Report Analyzer here

• Run-time environment: We tested our artifacts using Linux
or macOS. Since the TLS-Docker-Library contains some bash
and python scripts this is also our recommendation. Those
scripts depend on Docker. Therefore, root access is also needed.

• Hardware: No special Hardware needed. 16GB Ram is rec-
ommended to run TLS-Anvil.

• Output: The results of TLS-Anvil are stored in various json
files. Those should be processed and evaluated with our Report
Analyzer web application, which is also available as Docker
image.

• Experiments: Analysis of TLS clients and servers using TLS-
Anvil.

• Required disk space: Roughly 50 GB, considerably more if
the whole Docker library is built (roughly 1 TB).

• Approximate time required to prepare the workflow: 2h

• Time required to complete experiments: Key results can be
recreated quickly using a low testing strength of one, which
takes around one hour for OpenSSL. Testing with strength
two takes around six hours and strength three around 31 hours.
While we evaluated with a strength of three, we identified
that all findings can already be found using a strength of two.
Generating all results for all libraries using docker images takes
around one week when evaluating two libraries in parallel.
Table 4 in our paper contains an overview of execution times.

• Publicly available evolving repo: The TLS-Anvil GitHub
repo is available here.

• Code licenses: Apache 2

• Data licenses: Apache 2

• Archived stable references: The archived tags for TLS-Anvil,
TLS-Docker-Library, and the Large-Scale-Evaluator are:

– TLS-Anvil:
Tag v1.0.3

– TLS-Docker-Library:
Tag 2.0.1

– TLS-Anvil-Large-Scale-Evaluator:
Tag 1.0.1

The required versions of TLS-Anvil’s dependencies are listed
as submodules of the git repository.

A.3 Description

A.3.1 How to access

• TLS-Anvil can be found here.

• TLS-Docker-Library can be found here.

• TLS-Large-Scale-Evaluator can be found here.

Dependencies (optional)

• TLS-Attacker can be found here.

• TLS-Scanner can be found here.

See submodules of tags given in ’Archived’ from subsec-
tion A.2 for specific versions.

A.3.2 Hardware dependencies

Depending on the desired testing strength, up to 16 GB of
RAM are required. The overall CPU load of the system may
affect the tests performed by TLS-Anvil. Please ensure that
the system can provide enough processing resources for TLS-
Anvil to obtain accurate results. A relatively recent CPU
should be enough.

https://ruhr-uni-bochum.sciebo.de/s/0ccHC0jOpkKX3vG
https://ruhr-uni-bochum.sciebo.de/s/wUbe4Chpqy8VNj4
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Anvil/releases/tag/v1.0.3
https://github.com/tls-attacker/TLS-Docker-Library/releases/tag/2.0.1
https://github.com/tls-attacker/TLS-Anvil-Large-Scale-Evaluator/releases/tag/1.0.1
https://github.com/tls-attacker/TLS-Anvil
https://github.com/tls-attacker/TLS-Docker-Library
https://github.com/tls-attacker/TLS-Anvil-Large-Scale-Evaluator
https://github.com/tls-attacker/TLS-Attacker.git
https://github.com/tls-attacker/TLS-Scanner.git


A.3.3 Software dependencies

To evaluate the considered libraries with TLS-Anvil and TLS-
Docker-Lib, Java 11, Docker, Docker-Compose, and Maven
are required. To build TLS-Anvil and its dependencies without
Docker, Java 11 SDK is required. Running TLS-Anvil outside
of a Docker container requires tcpdump.

A.3.4 Data sets

We provide the raw outputs of TLS-Anvil for the libraries
considered in our evaluation. While we evaluated the libraries
using a test strength of up to three, we identified that all find-
ings can already be reproduced with a test strength of two.
We hence provide the outputs for testing strength two.

A test output consists of multiple json files. These should
be processed using our web application that visualizes the
results (see below for more details).

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

Setting up TLS-Anvil You can either use our provided
Docker images or build everything yourself using a Dock-
erfiles contained in the TLS-Anvil repository. Note that
the docker commands below fetch the latest version of
TLS-Anvil.

a) Using the provided docker images:

1. Pull TLS-Anvil Docker image

docker pull \
ghcr.io/tls-attacker/tlsanvil:latest

2. Pull Report Analyzer Docker image

docker pull \
ghcr.io/tls-attacker/\
tlsanvil-reportanalyzer:latest

3. Pull Report Uploader Docker image

docker pull \
ghcr.io/tls-attacker/\
tlsanvil-result-uploader:latest

4. Adjust the tags to match a local build

docker tag \
ghcr.io/tls-attacker/tlsanvil:latest \
tlsanvil:latest
docker tag \
ghcr.io/tls-attacker/\
tlsanvil-reportanalyzer:latest \
uploader:latest
docker tag \
ghcr.io/tls-attacker/\
tlsanvil-reportanalyzer:latest \
reportanalyzer:latest

5. Clone the TLS-Anvil repository

git clone \
https://github.com/tls-attacker/\
TLS-Anvil.git

b) Building TLS-Anvil and the Report Analyzer yourself:

1. Clone the TLS-Anvil repository

git clone \
https://github.com/tls-attacker/\
TLS-Anvil.git

2. Run the build script

cd TLS-Anvil/
sh build.sh

3. Build the Report-Analyzer Docker image

cd Report-Analyzer/
docker-compose build

4. Build the upload Docker image (this uploads TLS-Anvil
json files to the Report Analyzer web application)

cd src/backend/uploader
docker build -t uploader .

Setting up TLS-Docker-Library

1. Clone the repository using

git clone https://github.com/tls-attacker/\
TLS-Docker-Library.git

2. Navigate to TLS-Docker-Library/

3. Execute setup.sh

4. Execute mvn install -DskipTests

Downloading OpenSSL docker images

1. Get provided client and server images



docker pull ghcr.io/tls-attacker/\
openssl-client:1.1.1i
docker pull ghcr.io/tls-attacker/\
openssl-server:1.1.1i

2. Adjust the tags to match a local build

docker tag 4791200dbed9 \
openssl-server:1.1.1i
docker tag 8fe8f5106aa9 \
openssl-client:1.1.1i

Building an OpenSSL library Docker Container your-
self (optional)

1. Navigate to TLS-Docker-Library/images/

2. Build the OpenSSL 1.1.1i server and client image

python3 build-everything.py -l \
openssl -v 1.1.1i

Building the TLS-Anvil-Large-Scale-Evaluator (op-
tional)

1. Clone the repository

git clone https://github.com/tls-attacker/\
TLS-Anvil-Large-Scale-Evaluator.git

2. Navigate to TLS-Anvil-Large-Scale-Evaluator/

3. Run mvn install -DskipTests

A.5 Experiment workflow
TLS-Anvil can be run in client and server test mode depending
on the tested endpoint. Regardless of the endpoint, TLS-Anvil
first performs a feature discovery to determine suitable values
for test parameters as well as applicable test templates. Since
most test templates are either exclusively client or server test
templates, many tests will be skipped during the execution.
This is also the case for tests that must be skipped if an end-
point does not support a feature required for the test.

During the execution, TLS-Anvil creates json files for every
executed test template containing the detailed results. The fol-
lowing guide shows how the OpenSSL server and client can
be tested using TLS-Anvil. Both peers run inside a Docker
container. The test results are stored inside the current work-
ing directory.

A.5.1 Testing OpenSSL Server

1. Create a separate Docker network

docker network create tls-anvil

2. Start the OpenSSL Server

docker run \
-d \
--rm \
--name openssl-server \
--network tls-anvil \
-v cert-data:/certs/ \
openssl-server:1.1.1i \
-port 8443 \
-cert /certs/rsa2048cert.pem \
-key /certs/rsa2048key.pem

3. Start TLS-Anvil

docker run \
--rm \
-it \
-v $(pwd):/output/ \
--name tls-anvil \
--network tls-anvil \
tlsanvil:latest \
-outputFolder ./ \
-parallelHandshakes 1 \
-strength 1 \
-identifier openssl-server \
server \
-connect openssl-server:8443 \
-doNotSendSNIExtension

A.5.2 Testing OpenSSL Client

1. Create a separate Docker network

docker network create tls-anvil

2. Start TLS-Anvil

docker run \
--rm \
-it \
-v $(pwd):/output/ \
--network tls-anvil \
--name tls-anvil \
tlsanvil:latest \
-outputFolder ./ \
-parallelHandshakes 3 \
-parallelTests 3 \
-strength 1 \
-identifier openssl-client \
client \
-port 8443 \
-triggerScript curl --connect-timeout 2

openssl-client:8090/trigger↪→

3. Start OpenSSL Client

docker run \
-d \



--rm \
--name openssl-client \
--network tls-anvil \
openssl-client:1.1.1i \
-connect tls-anvil:8443

A.5.3 Testing all Libraries

Since we needed to analyze multiple servers and clients of
different libraries the manual process shown above results in
a large overhead. Therefore, we automated the Docker con-
tainer launching with a (Java) tool TLS-Anvil-Large-Scale-
Evaluator. To analyze the OpenSSL server using this tool, the
following command should be executed from the main folder
of the cloned repository:

java -jar \
apps/TLS-Anvil-Large-Scale-Evaluator.jar \
-m server -e testsuite -i openssl -v 1.1.1i \
-p 1 -s 2

To analyze the client use:

java -jar \
apps/TLS-Anvil-Large-Scale-Evaluator.jar \
-m client -e testsuite -i openssl -v 1.1.1i \
-p 1 -s 2

After building the docker images for the libraries versions
listed in the paper, you can run TLS-Anvil against all consid-
ered implementations using:

-i bearssl boringssl botan gnutls libressl \
mbedtls nss openssl rustls s2n tlslite_ng \
wolfssl matrixssl \
-v 0.6 3945 2.17.3 3.7.0 3.2.3 2.25.0 3.60 \
1.1.1i 0.19.0 0.10.24 0.8.0-alpha39 \
4.5.0-stable 4.3.0

A.6 Evaluation and Expected Results
To evaluate our results, you can either recreate them using the
explanations from subsection A.5 or use the data from our
experiments, which are available here.

A.6.1 Uploading Test Results to the Report Analyzer

To start with the evaluation you should start the Report Ana-
lyzer by navigating into the cloned TLS-Anvil repository and
running:.

cd Report-Analyzer
docker-compose up -d

After that, a web application should be available at
http://localhost:5000. The application offers three main

pages: ’Upload’, ’Analyzer’, and ’Manage’. While it is possi-
ble to upload results using the web app, we recommend using
the uploader Docker container as it collects all necessary files
automatically. To start a recursive search for results from your
current directory and upload them to the web application, use:

docker run \
--rm \
-it \
--network host \
-v $(pwd):/upload \
uploader

A.6.2 Analyzing Test Results

The drop down menu in the upper left corner of the ’Analyzer’
page shows all test results uploaded to the Report Analyzer’s
database. In order to analyze a result, select a test result and
click the ’Add’ button next to the drop down menu. The Re-
port Analyze will then show some basic execution properties,
such as the execution time, and a list containing each test
template that was executed and a symbol that indicates the
test result. A check mark indicates a strictly succeeded test,
a cross indicates a failed test. A check mark with a warning
sign indicates a conceptually succeeded test, a cross with a
warning sign indicates a partially failed test. An exclamation
mark indicates further information is available on the test
results.

Clicking on the result symbol leads to a detail page for
the test template. The list shows the result for each test case
executed throughout the test template. Clicking on an iden-
tifier on the left or a sub result on the right opens a modal
window that summarizes the test inputs used for this specific
test case as well as some meta data. Additionally, it is possible
to inspect and download a pcap file that contains the recorded
traffic of this specific test case.

Using the filter menu above the results table, it is possible
to filter connections, for example, to only show connections
where a parameter had a specific value or where a specific
test result has been determined.

A.6.3 Key Results

Using TLS-Anvil, we identified a variety of RFC violations
for the 13 considered libraries. Below, we describe how to
identify some of the main findings using the Report Analyzer
and our provided test results.

wolfSSL Authentication Bypass wolfSSL client 4.5.0 al-
lows a server to bypass the authentication by sending a
Certificate message with an empty certificate list. Open
the test results for wolfSSL client (wolfssl-client-4.5.0-
stable-WWkfM) in the Report Analyzer. Search for the

https://ruhr-uni-bochum.sciebo.de/s/wUbe4Chpqy8VNj4


emptyCertificateList test in the list and click on the re-
sult symbol on the right. On the new page, some connec-
tions are marked as succeeded (with a checkmark), while
others failed. The seemingly succeeded tests are the result of
wolfSSLs intolerance for some record lengths. Since record
fragmentation with different lengths is a parameter of our test
input, wolfSSL sometimes can not finish the handshake. Since
our RFC violation and the first fragmented records both take
place within our first flight of messages, it appears as if wolf-
SSL sometimes correctly rejects our malformed Certificate
message which is not the case. To obtain a clear test result,
click on the drop down menu on the top of the page and se-
lect RECORD_LENGTH. This will filter the connections to only
show a specific fragmentation length in bytes. Change the
value on the right from 1 to 16384, which effectively shows
only those handshakes where no record fragmentation was
used. Inspecting the remaining test results of the list, either
by hovering on the result symbol or clicking on it, shows
that wolfSSL always failed to reject the invalid message and
instead proceeded to send its final handshake message and
application data. You can compare this behavior to the very
similar emptyCertificateMessage test, where wolfSSL be-
haves as expected. In contrast to the previous test, here we
use an entirely empty message (with a message length of
zero). By applying the same filter steps as before, the results
show that wolfSSL rejects this type of empty Certificate
message correctly.

MatrixSSL Padding Oracle Vulnerability The MatrixSSL
4.3.0 client indicates an invalid padding upon decryption
for ciphersuites that use SHA256 to compute the HMAC.
Open the same test result as before and search for the test
invalidCBCPadding. MatrixSSL aborted the connection for
all messages that contained an invalid padding value. How-
ever, for SHA256 cipher suites, MatrixSSL does not send an
alert as it does for all other cipher suites. We further analyzed
this behavior and identified that this is due to a segmentation
fault. This behavior is unique to the invalid padding error
case and thus leaks information about the obtained plaintext.
You can compare this behavior to the invalidMAC test, where
MatrixSSL always sends an alert regardless of the cipher
suite.

MatrixSSL Unproposed Groups The MatrixSSL 4.3.0
client accepts that a server negotiates certain curves that have
not been proposed by the client. While MatrixSSL offers
the curves secp256r1, secp384r1, x25519, and secp521r1 it
also accepts ServerKeyExchange messages that contain a
public key of the curves secp192r1 and secp224r1, which
both have significantly weaker security properties. To iden-
tify this behavior, open the test results for MatrixSSL
client (matrixssl-client-4.3.0-ik8fF) and search for the test
acceptsUnproposedNamedGroup and click on the test re-
sult symbol. Using the drop down menu at the top, se-

lect ’Test Result’ as the filter and set the desired value to
’FAILED’ in the drop down menu on the right. By clicking
on the remaining test results, the Report Analyzer shows a
text box with a summary of details in json. First of all, the
DerivationContainer element shows the chosen parame-
ters of the test. The NAMED GROUP parameter for the failing
tests is either secp192r1 or secp224r1. Further below, the
Stacktrace shows the failed JUnit Assertion with an indi-
cation of the error. In this case, an alert was expected (since
the server made an illegal selection) but MatrixSSL client
proceeded to send a ClientKeyExchange, ChangeCipherSpec,
and Finished message instead.

A.7 Experiment customization
You can also run your own experiments with TLS-Anvil
against any server or client. For this purpose run the jar avail-
able in TLS-Anvil/TLS-Testsuite/apps from the cloned and
built repository or use our provided jars. To test a server run-
ning on localhost:4433, use:

java -jar TLS-Testsuite.jar server -connect \
localhost:4433

To test a client from port 4433, use:

java -jar TLS-Testsuite.jar client -port 4433 \
-triggerScript triggerScript.sh

Where triggerScript.sh contains the command to start a
client that connects to localhost:4433.

A.8 Notes
Analyzing the issues for a scientific paper sometimes required
additional manual labour, as we grouped failed tests based
on their route cause to get to the final number of findings.
Therefore the number of failed tests is larger than the number
of findings.

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://ruhr-uni-bochum.sciebo.de/s/0ccHC0jOpkKX3vG

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Testing OpenSSL Server
	Testing OpenSSL Client
	Testing all Libraries

	Evaluation and Expected Results
	Uploading Test Results to the Report Analyzer
	Analyzing Test Results
	Key Results

	Experiment customization
	Notes
	Version


