A Artifact
A.1 Abstract

In our Artifact, we provide the source code of CELLIFT, a
native RISC-V toolchain, and other dependencies. We also
provide the framework for performing all the experiments
described in this paper and analyzing the obtained results. Ev-
erything is packaged as a Docker image to allow for optimal
reproducibility. To reproduce the experiments, we expect a
machine with 256 GB memory and 500 GB of free storage.

A.2 Artifact checklist

* Algorithm: CELLIFT is a newly developed algorithm to effi-
ciently generate IFT shadow logic as part of a Yosys pass.

* Program: We use a set of five external RISC-V CPU designs
(Ariane, BOOM, Ibex, Rocket, PULPissimo) as evaluation
targets, as well as benchmarks from the RISC-V Architectural
testing framework. All of this code is included in our artifact.

e Compilation: We include the required compilers and inter-
preters.

* Transformations: We include the required Verilog transfor-
mations (CELLIFT and GLIFT), implemented as Yosys passes.

* Binary: We include prebuilt Verilator binaries of the five CPU
designs in all instrumentation modes (i.e., vanilla, CELLIFT,
and GLIFT) where possible. Note that GLIFT instrumentation
or synthesis sometimes fails, as explained in Section 7.2.

* Run-time environment: The bulk of our artifact is a Docker
image that runs on Linux. We tested our image on an Ubuntu
22.04 system with 5.15.0-37-generic kernel.

* Hardware: We do not require any special hardware, but do
need a relatively large amount of DRAM (256 GB) to run all
the experiments.

Metrics: The experiments record runtime performance and
IFT precision for microbenchmarks for CELLIFT as well as
GLIFT. Further experiments record execution time and mem-
ory footprint of the instrumentation and synthesis process for
all instrumentation modes. We also measure the simulation
performance on for all instrumentation modes. Lastly, we show
resource usage and clockable frequency after FPGA synthesis
for all the five CPU designs under all instrumentation modes.

* Output: For all experiments used in the Evaluation section of
this paper (Section 7), we include code to regenerate the charts.
Also, we include code to reproduce all results in the Scenarios
section of this paper (Section 8).

* Experiments: With the exception of the FPGA results, all
experiments are executed automatically when building the
Docker image. This means the way to reproduce all experi-
ments is encoded in the Dockerfile, and a Docker container
based on this Dockerfile would contain the generated results,
and can be used to re-run individual experiments if desired.

* How much disk space required: The docker image with
all the layers is 330 GB, and Xilinx Vivado requires around
150 GB for downloading and installation. In total, we estimate
a total of 500 GB of free storage is required.

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
é;usenlx é;usenlx susenix

ASSOCIATION ASSOCIATION @ ssocition

AVAILABLE REPRODUCED

* How much time is needed to prepare workflow: To prepare
the workflow, conscious effort is only needed to retrieve the
Git repository and the Docker image, which should take only a
few minutes.

* How much time is needed to complete experiments: Repro-
ducing the experiments takes approximately 3 days.

¢ Publicly available: Stable URL: https://github.com/c
omsec-group/cellift-artifacts/commit/eaa%a26a
e85fd6a7ae8cd248416315414ae4c135. The README
points to a stable (sha256-verified) Dockerhub Docker image
that contains the rest of the code and data, namely docker. 1
o/ethcomsec/cellift-artifact-evaluation@sha256:
9a15d4070d321026ad4d5d%ab5a236842¢c6c456279£9c08f
4fa4132de7b399ce.

¢ Code licenses: CELLIFT is licensed under GPL3.

* Workflow frameworks used: Docker, Make, Luigi.

A.3 Description
A.3.1 How to access

The project is located at https://comsec.ethz.ch/cellift.
Our artifact is a single Git repository designed primarily to build a
Docker image that has run all the experiments automatically. This
Git repository is hosted at the ‘Publicly available’ checklist entry.
The README.md in that repository contains further instructions to
obtain the prebuilt Docker image from Dockerhub.

A.3.2 Hardware dependencies

The artifact will run all experiments on a machine with 256 GB of
memory.

A.3.3 Software dependencies

We tested the Docker image on Ubuntu 22.04 LTS kernel 5.15.0-
37-generic, but we expect it to work on a wide range of Linux
distributions.

To reproduce the FPGA experiments in the paper, we furthermore
depend on the Xilinx Vivado FPGA synthesis tool (version 2019.3).

A.4 Installation
The installation of our artifact requires the following two steps:

1. Cloning the git repository specified in the checklist and using
its README.md to pull the Docker image artifact hosted on
Dockerhub.

2. Reproducing the FPGA experiments, requires the installation
of the full edition of Vivado 2019.3 from the Xilinx website
and a license.

A.5 Experiment workflow

Follow the instructions in the git repository README.md that spec-
ifies in detail how to start a Docker container with the image, and
how to reproduce each experiment, and examine the results.


https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
https://github.com/comsec-group/cellift-artifacts/commit/eaa9a26ae85fd6a7ae8cd248416315414ae4c135
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
docker.io/ethcomsec/cellift-artifact-evaluation@sha256:9a15d4070d321026ad4d5d9ba5a236842c6c456279f9c08f4fa4132de7b399ce
https://comsec.ethz.ch/cellift

In principle, cloning the git artifact repository and rebuilding
the Docker image using the Dockerfile in the git repository will
rebuild all CELLIFT code and designs from scratch and perform
the experiments (except the FPGA experiments). For maximum
reliability, we also provide the prebuilt Docker image with all code,
binaries and results that we have found to work, which can be used
to reproduce all the experiments (and use CELLIFT in general if
desired).

To run the FPGA experiments, first source the settings64.sh file
from the Vivado installation dir, and follow the instructions in the
Artifact README.md.

A.6 Evaluation and expected results

The key results from our experiments are as follows. For each result,
we point to scripts (Python or bash) that drive the experiments and
show the analysis.

1. Instrumented designs that we can synthesize to C++ (i.e.
be compiled) for all five RISC-V CPU designs, con-
trary to GLIFT, and with less CPU time and mem-
ory (follows from plot_instrumentation_performance.py and
plot_rss.py), and with higher tainting precision (follows from
plot_num_tainted_states_ibex.py).

2. For the designs that can be compiled in all instru-
mentation modes, we show that CELLIFT has lower
performance overhead than GLIFT (follows from
plot_benchmark_performance.py).

3. The Meltdown and Spectre simulations reproduce Figure
11, showing they can both be detected (follows from
plot_tainted_elements.py).

4. We show several bug scenarios detected by CELLIFT
(run_scenarios.sh).

5. We show FPGA synthesis results, showing that CELLIFT in-
strumented designs can be synthesized, with fewer resources
than the GLIFT instrumented designs.

We refer to the README.md of the artifact git repository for the
detailed steps to reproduce each of the key results described above.

A.7 Experiment customization

There is ample customization opportunity in the Docker image,
because the code of the instrumentation tool as well as the target
designs are there and can be modified and rebuilt. This does require
a deeper knowledge that goes beyond this appendix.

A.8 Version
Based on the LaTeX template for Artifact Evaluation V20220119.



	Artifact
	Abstract
	Artifact checklist
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Version


