
A Artifact Appendix

A.1 Abstract
In this paper, we present the first techniques to automate the
discovery of new censorship evasion techniques purely in the
application layer. We present a general solution and apply it
specifically to HTTP and DNS censorship in China, India, and
Kazakhstan. Our automated techniques discovered a total of
77 unique evasion strategies for HTTP and 9 for DNS, all of
which require only application-layer modifications, making
them easier to incorporate into apps and deploy. We analyze
these strategies and shed new light into the inner workings
of the censors. We find that the success of application-layer
strategies can depend heavily on the type and version of the
destination server. Surprisingly, a large class of our evasion
strategies exploit instances in which censors are more RFC-
compliant than popular application servers.

For the purposes of this submission, our artifacts
are (1) the strategies we present in the paper and
(2) the code used to implement them. We developed
our fuzzer by building off of the open-source Geneva
project (https://github.com/Kkevsterrr/geneva), but
our code has not yet merged into that repository publicly.
Therefore, we have provided the full modified codebase to
assist in the evaluation.

For this artifact evaluation, we demonstrate how the reader
can evaluate (1) that our strategies can generate modified
requests; (2) that our strategies can evade censorship. Option-
ally, the evaluator can test for themselves that our tool can
fuzz HTTP requests.

A.2 Artifact check-list (meta-information)
• Algorithm: A new algorithm for bypassing censorship with modifications

to application-layer data.

• Program: The program—an extension to our prior work, Geneva—that
implements the algorithm. Specifically, we are asking you to evaluate the
engine that runs the strategies that our algorithm discovered, not to run
the genetic algorithm that found the strategies.

• Security, privacy, and ethical concerns:

• Metrics: Whether or not it is able to access otherwise restricted content.

• Output: HTTP output (from running curl).

• Experiments: Re-run several of our censorship-evading strategies.

• How much disk space required (approximately)?: Very little (megabytes);
a free-tier Ubuntu AWS instance would suffice.

• How much time is needed to prepare workflow (approximately)?: Minutes
(set up an Ubuntu VM, install, and run).

• How much time is needed to complete experiments (approximately)?: Min-
utes, including setup.

• Publicly available (explicitly provide evolving version reference)?: Yes

• Code licenses (if publicly available)?: BSD 3-Clause "New" or "Revised"
License

• Archived (explicitly provide DOI or stable reference)?:
https://zenodo.org/record/6692160

A.3 Description
A.3.1 How to access

The code is available at
https://zenodo.org/record/6692160

We developed our fuzzer by building off of the open-source
Geneva project (https://github.com/Kkevsterrr/geneva), but
our code has not yet merged into that repository publicly.
Therefore, we have provided the full modified codebase to
assist in the evaluation.

Documentation for Geneva is available at
https://geneva.readthedocs.io/en/latest/. To
ease the burden on the artifact evaluators, we have provided
just the required steps to evaluate our artifact below.

A.3.2 Software dependencies

See the dependency installation in the installation setup below
(some basic python libraries).

A.3.3 Security, privacy, and ethical concerns

As this is accessing a server that we control, we do not antici-
pate any security, privacy, or ethical concerns. However, we
do suggest that the evaluator run from a machine inside of
a country that does not prosecute censorship circumvention
(e.g., from within the United States).

A.4 Installation
1. Setup a machine: To test our artifacts, we recommend

using Ubuntu 18.04, and although it may be possible to
reproduce our results using a virtual machine, it is ideal
if the machine has a public IP address and is not behind a
NAT, to avoid any potential interference from your host
or home network.

We recommend setting up a free-tier Amazon EC2 ma-
chine with Ubuntu 18.04. Once your machine is up and
running, transfer our artifact submission to it.

2. Install dependencies: Next, install the dependencies for
Geneva:

cd geneva/
sudo apt-get install build-essential python-dev
libnetfilter-queue-dev libffi-dev libssl-dev
iptables python3-pip
...
python3 -m pip install -r requirements.txt
...

3. Test strategies: To validate our strategies, reviewers can
test (1) that our code generates the strategies it says it
does and (2) that these strategies are actually effective at
evading censorship.

In our paper, we present over 85 strategies, and tested these
across 8 servers against 3 different censoring regimes, using
vantage points we obtained in those locations. Unfortunately,
for security reasons, we cannot give evaluators direct access
to these vantage points.

To make evaluation easier, we have set up an HTTP server
running Apache 2.4.6 in Kazakhstan with www.youporn.com
as the required Host header (we have provided the IP address
and port of that server in our submission). Kazakhstan oper-
ates censorship bidirectionally (forbidden requests sent into
the country are censored in the same way as requests leaving
the country), which enables evaluators to trigger HTTP cen-
sorship remotely to our vantage point. If evaluators wish to
test the rest of our strategies to the other censored countries
or our DNS strategies, we can offer advice and work with the
evaluators as to how to best purchase vantage points in those
locations and test the remaining strategies.

With the server we set up, an evaluator can safely test a
sample of our strategies to this IP address and verify that
they do evade censorship. To maintain reviewer anonymity,
we will discard this server’s logs. In the below guide, we
have removed our server’s IP address; wherever you see <ip>,
please replace with the IP address we provided in HotCrp

First, we will verify that you can reach our server. Start
by curling to our server. Note that Since curl will not set
a Host header by default, you should see a 403 Forbidden
response:

$ curl <ip>:8000
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>403 Forbidden</title>
</head><body>
<h1>Forbidden</h1>
<p>You don’t have permission to access /
on this server.</p>
</body></html>

Second, we will verify that you can experience censorship
to our vantage point. Start tcpdump to our IP address in the
background, and make a request with www.youporn.com in
the Host header. You should see that censorship occurs (the
censor null-routes our request), and the request is retransmit-
ted:

$ sudo tcpdump -f -n ’host <ip>’ &
$ curl -H "Host: www.youporn.com" <ip>:8000
03:31:11.724898 IP 172.172.172.172.38520 > <ip>.8000: Flags [S], seq
2244093827, win 62727, options [mss 8961,sackOK,TS val 585883751 ecr
0,nop,wscale 7], length 0
03:31:11.840224 IP <ip>.8000 > 172.172.172.172.38520: Flags [S.], seq
1501790452, ack 2244093828, win 65160, options [mss 1460,sackOK,TS val
2426661480 ecr 585883751,nop,wscale 7], length 0
03:31:11.840266 IP 172.172.172.172.38520 > <ip>.8000: Flags [.], ack 1,
win 491, options [nop,nop,TS val 585883867 ecr 2426661480], length 0
03:31:11.840609 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq
1:80, ack 1, win 491, options [nop,nop,TS val 585883867 ecr
2426661480],
length 79
03:31:12.219434 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq
1:80, ack 1, win 491, options [nop,nop,TS val 585884246 ecr
2426661480],
length 79
03:31:12.571446 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq

1:80, ack 1, win 491, options [nop,nop,TS val 585884598 ecr
2426661480],
length 79
03:31:13.275434 IP 172.172.172.172.38520 > <ip>.8000: Flags [P.], seq
1:80, ack 1, win 491, options [nop,nop,TS val 585885302 ecr
2426661480],
length 79

Shut down the tcpdump before continuing.

A.5 Experiment workflow

Next, we can evaluate that Geneva can implement the strate-
gies in our paper. Since our paper reported over 85 strategies,
to reduce the burden on the evaluators, we have sampled 3
strategies that work with this server and evade censorship in
Kazakhstan.

• Strategy 1 (Long Request):

[HTTPRequest:host:*]-insert{%20:start:value:1600}-|

• Strategy 2 (Host Header Whitespace):

[HTTPRequest:host:*]-insert{%20:end:value:1}-|

• Strategy 3 (Request Line Whitespace):

[HTTPRequest:method:*]- insert{%0A:start:value:1}-| \/

To use Geneva to test a strategy, we use Geneva’s
--test-type flag to invoke our HTTP fitness function (called
application_http), and can test strategies with the follow-
ing:

$ python3 evolve.py --test-type application_http --log debug --port 8000
--server <ip> --headers Host:www.youporn.com --eval-only "<STRATEGY HERE>"

Explanation of flags:

• --test-type: The fitness function plugin to invoke, in
this case, application_http

• --log: the log level to use (debug, so the evaluator can
see the strategy running and the exact request it sends
on the wire)

• --port: the port the server is listening on (8000 for our
server)

• --server: the server to test with; supply our IP address.

• --eval-only: this is a Geneva flag instructing it to eval-
uate a single strategy and then exit. Provide the strategy
to test here.

A.6 Evaluation and expected results
Our primary claim is that these modifications to application-
layer data permit evasion of censorship. You can use the
above steps to run individual strategies (either the ones we
selected, or any of the ones from the paper: you should be able
to simply copy-paste them where it says “STRATEGY HERE”)
and should see something to the effect of the following:

$ sudo python3 evolve.py --test-type application_http --log debug
--port 8000 --server <ip> --headers Host:www.youporn.com --eval-only
"[HTTPRequest:host:*]-insert{%20:end:value:1}-|"
2022-06-22 20:51:13 DEBUG:Launching strategy evolution: --test-type
application_http --log debug --port 8000 --server <ip> --headers
Host:www.youporn.com --eval-only [HTTPRequest:host:*]-
insert{%20:end:value:1}-|
2022-06-22 20:51:13 INFO:Logging results to trials/2022-06-
22_20:51:13/logs
2022-06-22 20:51:14 DEBUG:Beginning evaluation in plugin
2022-06-22 20:51:14 DEBUG:Now entered evaluate of
ApplicationHTTPPlugin.
2022-06-22 20:51:14 DEBUG:Only using port 8000
2022-06-22 20:51:14 DEBUG:Starting with request: b’GET /
HTTP/1.1\r\nHost:www.youporn.com\r\n\r\n’
2022-06-22 20:51:14
DEBUG:---
2022-06-22 20:51:14 DEBUG:Running individual:
[HTTPRequest:host:]-
insert{%20:end:value:1}-| \/
2022-06-22 20:51:14 DEBUG: + out action tree triggered:
[HTTPRequest:host:]-insert{%20:end:value:1}-|
2022-06-22 20:51:14 DEBUG:Inserting value: |%20| into
the end of the
variable header_value, 1 times, in the header
Host:www.youporn.com
2022-06-22 20:51:14 DEBUG:Shuffling headers...
2022-06-22 20:51:14 DEBUG:New request string: b’GET /
HTTP/1.1\r\nHost:www.youporn.com \r\n\r\n’
2022-06-22 20:51:14 DEBUG:Connecting to url <ip> with
port 8000
2022-06-22 20:51:14 DEBUG:Response data
HTTP/1.1 200 OK
Date: Thu, 23 Jun 2022 03:51:14 GMT
Server: Apache/2.4.6 (Unix)
Last-Modified: Thu, 23 Jun 2022 03:12:30 GMT
ETag: "2d-5e214d2fe4577"
Accept-Ranges: bytes
Content-Length: 45
Content-Type: text/html

<html><body><h1>It works!</h1></body></html>

2022-06-22 20:51:14
DEBUG:==
2022-06-22 20:51:14 DEBUG:EVADED the censor! Had
response line: HTTP/1.1
200 OK
2022-06-22 20:51:14
DEBUG:==
2022-06-22 20:51:14 DEBUG:Punishing for complexity: 1
2022-06-22 20:51:14 DEBUG:New request is 1 bytes longer
than original.
Punishing -10 fitness.
2022-06-22 20:51:14 DEBUG:Individual
[HTTPRequest:host:]-
insert{%20:end:value:1}-| \/ ran with a fitness of: 316
2022-06-22 20:51:14 INFO:[316]
2022-06-22 20:51:14 INFO:Trial 0: success! (fitness
= 316)
2022-06-22 20:51:14 INFO:Overall 1/1 = 100%
2022-06-22 20:51:14 INFO:Exiting eval-only.

In the above output, you can see that the strategy was imple-
mented on the outgoing request: one space (%20) was added to
the outbound request at the end of the value of the Host header
(’GET / HTTP/1.1\r\nHost:www.youporn.com \r\n\r\n’).

You may use tcpdump to verify that these bytes are transmit-
ted on the wire.

You can next see that this strategy evaded censorship, and
the server was able to properly respond. You can also see that
the fitness function correctly detected that it evaded censor-
ship, and awarded a positive fitness value accordingly. Repeat
this step for the three strategies we provided, and you can
verify that each correctly implements the strategy it purports
to on the wire and that those strategies successfully evade
censorship.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

