
A Artifact Appendix

A.1 Abstract
Our artifact is a pure software for fuzzing protocol implemen-
tations. It has no hardware requirement and very few software
dependencies (Ubuntu Linux system, Python, and Docker).
All of our approaches described in our paper are implemented
in this artifact. The major claim is that our artifact is able to
cover more of the state space. Without any manual interven-
tion, the results can be found in artifact’s execution log. We
also provide scripts that may be used to reproduce the results.

A.2 Artifact check-list (meta-information)
• Algorithm: A new state approximation method for fuzzing

protocol implementation.

• Program: We used the benchmark FuzzBench
(https://github.com/bajinsheng/SGFuzz_Fuzzbench)

• Compilation: Clang >= 6.0

• Run-time environment: Ubuntu 20.04

• Metrics: State transition coverage, branch coverage

• How much disk space required (approximately)?: 20GB

• How much time is needed to prepare workflow (approxi-
mately)?: 1 hour

• How much time is needed to complete experiments (approx-
imately)?: 2 days

• Publicly available (explicitly provide evolving version ref-
erence)?: https://github.com/bajinsheng/SGFuzz

• Code licenses (if publicly available)?: Apache License 2.0

• Archived (explicitly provide DOI or stable reference)?:
Source code: https://github.com/bajinsheng/SGFuzz/tree/8f45141
Experimental data: https://zenodo.org/record/5555955

A.3 Description
A.3.1 How to access

git clone https://github.com/bajinsheng/SGFuzz
cd SGFuzz
git checkout 8f45141

A.3.2 Hardware dependencies

N/A

A.3.3 Software dependencies

• Ubuntu (>=16.04)

• Docker (>=20.10.7)

• Python (>=3.8)

A.3.4 Data sets

N/A

A.3.5 Models

N/A

A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation
We provide a script to compile and configure our artifact, and
only two steps are needed to setup:

1. git clone https://github.com/bajinsheng/SGFuzz

2. cd SGFuzz && ./build.sh

A.5 Evaluation and expected results
We explain our major claims, corresponding results in the
paper, and the detailed steps to reproduce them.

A.5.1 Key Claims

We made these key claims in our paper:

1. State Transition Coverage. SGFUZZ is able to cover
more of the state space. SGFuzz significantly outperform
LibFuzzer on state transition coverage in 23 hours.

2. Branch Coverage. SGFuzz slightly outperform Lib-
Fuzer on branch coverage in 23 hours.

3. State Identification Effectiveness. Changed variables
with name constants are accurate approximation of state
variables.

4. Prevalence of Stateful Bugs. Stateful bugs are prevalent
in protocol implementations.

5. Prevalence of State Variables. Named constants are
widely used for state variables.

A.5.2 Key Results

We have these key results in our paper to support our claims.

1. State Transition Coverage. SGFuzz covers 33x more
sequences of state transitions than LibFuzzer in 23 hours
on average. (Research Question 1)

2. Branch Coverage. SGFuzz achieves 2.20% more
branch coverage than LibFuzzer in 23 hours on aver-
age. (Research Question 2)

https://github.com/bajinsheng/SGFuzz

3. State Identification Effectiveness. An average 99.5%
of nodes in the State Transition Tree (the data structure
constructed in SGFuzz for tracing states) in 23 hours are
referring to values of actual state variables. (Research
Question 3)

4. Prevalence of Stateful Bugs. Every four in five bugs that
are reported in OSS-Fuzz for protocol implementations
among our subjects are stateful. (Appendix Section 3)

5. Prevalence of State Variables. Top-50 most widely
used open-source protocol implementations define state
variables with named constants. (Appendix Section 4)

A.5.3 Prerequistities to reproduce

We have integrated our code into the FuzzBench framework,
so only the dependencies of FuzzBench are necessary to eval-
uate our code. Please refer to the following commands to
install and configure the FuzzBench.

git clone https://github.com/bajinsheng/
SGFuzz_Fuzzbench→

cd SGFuzz_Fuzzbench
git submodule update --init
sudo apt-get install build-essential

python3.8-dev python3.8-venv
→

→

make install-dependencies
source .venv/bin/activate

More information about the installation of Fuzzbench
can be found at: https://google.github.io/fuzzbench/
getting-started/prerequisites/.

Note that the FuzzBench framework depends on docker, so
it is hard to run FuzzBench within docker.

A.5.4 Steps to reproduce

1. State Transition Coverage.

(1) SGFuzz’s results. Executing this command in the
root of SGFuzz_FuzzBench folder:

sudo make run-sfuzzer-h2o_h2o-fuzzer-http2

After prompting some building information (several min-
utes for the first time), the fuzzing status will be gradually
shown in the terminal, like this:

#2 INITED cov : 641 f t : 642 co rp : 1 /12569 b
exec / s : 0 r s s : 38Mb s t a t e s : 13 l e a v e s : 2

#3 NEW cov : 649 f t : 659 co rp : 2 /24Kb
l im : 12569 exec / s : 0 r s s : 39Mb s t a t e s : 13
l e a v e s : 2 L : 12569/12569 MS: 1 CopyPart −

The number of leaves represents the number of unique
state transition sequences observed in the current fuzzing
campaign.

(2) LibFuzzer’s results. As a reference, the results of
LibFuzzer have to be got manually, because of the lack of
leaves information. We copy the generated corpus from
LibFuzzer to SGFuzz, and observe the leaves information.

Starting an interactive docker shell for LibFuzzer:

sudo make debug-libfuzzer-h2o_h2o-fuzzer-http2→

In the docker container, running the LibFuzzer:

$ROOT_DIR/docker/benchmark-runner/startup-runner.sh→

After 23 hours, in the docker container, typing ’CTRL+C’
to stop LibFuzzer. In the host, copying the generated
corpus from docker to host:

sudo docker cp docker-id-libfuzzer:/out/corpus
.

→

→

The docker-id-libfuzzer needs to be replaced by the actual
hash id of the docker container. Then starting a docker
container for SGFuzz:

sudo make debug-sfuzzer-h2o_h2o-fuzzer-http2→

In the host, copying the corpus to the new docker con-
tainer:

sudo docker cp corpus docker-id-sgfuzz:/out

The docker-id-sgfuzz should be replaced by the SGFuzz’s
docker hash id as well. In the SGFuzz’s docker container,
running SGFuzz to observe the results:

./h2o-fuzzer-http2 corpus/

In the output, the line with the INITED represents the
total number of state transition sequences observed in
LibFuzzer’s campaign:

#1137 INITED cov : 1456 f t : 5274 co rp : 375/2703Kb
exec / s : 12 r s s : 340Mb s t a t e s : 235 l e a v e s : 47

(3) Evaluation. Comparing the number of leaves indicated
in each fuzzing campaign. Note that our experiments were
conducted in 23 hours, so we may notice a substantial
gap in state transition coverage between SGFuzz and
LibFuzzer after several hours, not a few minutes.

(4) More subjects. Changing h2o_h2o-fuzzer-http2
to curl_curl_fuzzer, mbedtls_fuzz_dtlsserver,
gstreamer_gst-discoverer in the commands and
redo steps 1-3 to evaluate other subjects.

(5) Variance. Our results are based on average number
across 20 runs. Beware of variance! Difference between
the two highest- and lowest-coverage runs may be up to
50% because of the randomness in fuzzing.

https://google.github.io/fuzzbench/getting-started/prerequisites/
https://google.github.io/fuzzbench/getting-started/prerequisites/

2. Branch Coverage.
The same steps as the state transition coverage experiment.

The only difference is that the branch coverage information
can directly got from the output of LibFuzzer, so we directly
run

sudo make run-libfuzzer-h2o_h2o-fuzzer-http2

instead of the step (2) in State Transition Coverage. The
branch coverage information is indicated as number of cov in
the output.

3. State Identification Effectiveness.
Please check the folder RQ3_State_Iden_Effic at https:

//zenodo.org/record/5555955, which includes all state
variables and the variables that are included in the STT.

4. Prevalence of Stateful Bugs.
Please check the folder A3_Bug_Preva at https://

zenodo.org/record/5555955, which includes all state vari-
ables and the variables that are included in the STT.

5. Prevalence of State Variables.
Please check the folder A4_Top50 at https://zenodo.

org/record/5555955, which includes all state variables and
the variables that are included in the STT.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955
https://zenodo.org/record/5555955

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Evaluation and expected results
	Key Claims
	Key Results
	Prerequistities to reproduce
	Steps to reproduce

	Version

