
A Artifact Appendix

A.1 Abstract

This artifact is separated into two parts: simulations (Sections
6 and 7 on the paper) and evaluations (Sections 8 and 9).

The simulations part assumes a machine with Python3.8
and the libraries scipy, numpy, lightning-utils, networkx, mat-
plotlib, and seaborn. This part runs standalone simulations
and was used to generate Figures 4, 5, 6, 7, and 10 on the
paper. In practice, to reduce running time, we ran most of the
simulations using Slurm on an internal cluster.

On the part of the evaluation, we implemented the Twilight
system in 4 components: smart contract (Solidity), enclave
(C++, SGX), relay (Python), and the evaluations manager
(Python). The enclave and relay parts were run on an Azure
VM. The tests were written using pytest, used Ganache as
a local blockchain, and the compiler solcjs to compile the
contract. In order to create fully reproduceable results, this
evaluation part can be executed only in Azure cloud environ-
ment. The manager creates the relevant resources in the cloud
and executes the system according to the evaluation experi-
ments. To run this part, we assume a machine with Python3.8,
the libraries paramiko (to establish SSH connection to the
machines) and matplotlib, seaborn to generate the plots, the
Pythonic Azure SDK, credentials with admin permissions (to
create resources such as VMs, NICs, IPs, etc.), and enough
quota in Azure to create these machines. To create Figures
8 and 9 in the paper, we used 6 VMs with the type Stan-
dard_DC1s_v2 (3 in each region: eastus and northeurope).

A.2 Artifact check-list (meta-information)
• Algorithm: We implemented Algorithm 1 from the paper (Ap-

pendix, Section A) inside the SGX (file Enclave/tree.cpp),
and Algorithm 2 (Appendix, Section B) inside the smart con-
tract (file smart_contract/channel.sol).

• Compilation: Most of our code is written in Python. The part
of the enclave is written in C++17 and could be compiled by
running make SGX_MODE=HW SGX_PRERELEASE=1 in
the root directory. The smart contract can be compiled using
any solidity compiler, we used solcjs without any flags.

• Hardware: The evaluation uses an Azure VM of type
Standard_DC1s_v2, with SGX-1. The local code runs in
Python and has no hardware requirements.

• Experiments: In the evaluation part, we created a line topol-
ogy of 6 machines: Alice, 4 relays, and Bob. For every through-
put value that has been tested, we executed a command on
Bob’s machine to initiate the given amount of payments every
second. Then, after 10 seconds, we queried Alice’s machine
for the number of finished payments (to get the throughput)
and for the duration of the payment (to get the latency).

• How much disk space required (approximately)?: Negligi-
ble. Less than 1GB should be sufficient.

• How much time is needed to prepare workflow (approxi-
mately)?: Creating and preparing all the cloud resources is
being executed once, and take less than an hour overall.

• How much time is needed to complete experiments (ap-
proximately)?: Each data point in Figures 9 and 10 should
be executed separately and takes around 20 minutes (can be
controlled by lowering the number of repetitions. We used a
default of 20 repetitions).

• Publicly available (explicitly provide evolving version refer-
ence)?: The Github repository is: https://github.com/s
aart/Twilight.

• Code licenses (if publicly available)?: None.

• Data licenses (if publicly available)?: We used the Lightning
Network topology which was queried (using a standard CLI
command https://github.com/lightningnetwork/lnd/
blob/593962b788753768661582d11221f32ebf7dbe67/cm
d/lncli/commands.go#L1515) from a Lightning node. This
is publicly available.

• Workflow frameworks used?: We used Python and Azure’s
SDK to manage the experiments (initiate and teardown ma-
chines), FastAPI (https://fastapi.tiangolo.com/) as the
communication framework between the relays, and Pistache
(https://github.com/pistacheio/pistache) as the
communication framework between the relay and the enclave.

• Archived (explicitly provide DOI or stable reference)?: On
the paper we used tag: https://github.com/saart/Twili
ght/tree/USENIX-Security-22.

A.3 Description
A.3.1 How to access

Publicly available at: https://github.com/saart/Twili
ght

A.3.2 Hardware dependencies

None (run on machines with specific requirements on the
cloud).

A.3.3 Software dependencies

Python3.8 with the libraries scipy, numpy, networkx,
mat plotlib, and seaborn. For the evaluation part, Azure SDK
is also required. Moreover, we assume network connectivity,
and in particular the ability to run Azure CLI command and
establish SSH sessions to Azure’s VMs.

A.3.4 Data sets

N/A

A.3.5 Models

N/A

https://github.com/saart/Twilight
https://github.com/saart/Twilight
https://github.com/lightningnetwork/lnd/blob/593962b788753768661582d11221f32ebf7dbe67/cmd/lncli/commands.go#L1515
https://github.com/lightningnetwork/lnd/blob/593962b788753768661582d11221f32ebf7dbe67/cmd/lncli/commands.go#L1515
https://github.com/lightningnetwork/lnd/blob/593962b788753768661582d11221f32ebf7dbe67/cmd/lncli/commands.go#L1515
https://fastapi.tiangolo.com/
https://github.com/pistacheio/pistache
https://github.com/saart/Twilight/tree/USENIX-Security-22
https://github.com/saart/Twilight/tree/USENIX-Security-22
https://github.com/saart/Twilight
https://github.com/saart/Twilight


A.3.6 Security, privacy, and ethical concerns

N/A

A.4 Installation

To install the Azure VM follow the description in: https:
//github.com/saart/Twilight#how-to-install-
on-a-new-azure-confidetial-computing-machine.
To install the local machine: Install Python3.8 with https:
//www.python.org/downloads/, install setuptools using
pip install setuptools==58.0.0, install azure cli using pip in-
stall azure-cli==2.19.0 and install the rest of requirements
using pip install -r simulations/requirements.txt. Then, create
permissions from your Azure profile using https://docs.m
icrosoft.com/en-us/azure/developer/python/sdk/
authentication-overview (make sure that you can authen-
ticate using python, e.g. by running the Pythonic command
get_client_from_cli_profile(ComputeManagementClient)).

A.5 Experiment workflow

The simulation workflow is standalone per Figure:

• Figure 4 can be reproduced using simula-
tions/distinct_routes.py

• Figures 5 and 6 can be reproduced using simula-
tions/visualizations/efficiency_privacy_tradeoff.py

• Figure 7 can be reproduced using simula-
tions/noise_simulations/liquidity_distribution.py
and then simulations/noise_simulations/success_rate.py

• Figure 10 can be reproduced using simula-
tions/visualization/adoption.py

The evaluation workflow is managed using the script simu-
lations/manage_tests.py.The general flow is:

1. Create the machines in the relevant regions (eastus and
northeurope).

2. Start/Restart the machines, which starts two processes:
the relay and the enclave as system services. This step
also refreshes the existing machines between different
experiments.

3. Build the P2P and channels topology. I.e. query for the
names of the relays, and execute register to create the
edges.

4. Execute a command on Bob’s machine, that initiates a
repetitive thread that starts payments according to the
given route and the given desired throughput.

5. Query Alice’s machine on the payments that have been
finished in the last few seconds, and store the throughput
(number of finished payments) and the latency (duration
of each payment).

Steps 2-5 are re-executed repetitively: both to evaluate
the same experiment again, and to evaluate using different
parameters (number of issued payments, route length).

In order to plot the results and reproduce Figures 8 and 9,
use the file simulations/draw_evaluation_figures.py.

A.6 Evaluation and expected results
Our main claim in the paper is that Twilight is a valid solution
to the probing attack of off-chain networks.

This claim is backed by this artifact that presents both
simulations and evaluations of the system and its properties.
Every one of the Figures 3-10 from the paper is backed with
the code that is presented in this artifact.

To reproduce the results of the simulations part (Figures
3-7 and 10), follow the description in Section A.5, and run
each file to generate the corresponding figure.

To reproduce the results of the evaluation part (Figures
8 and 9), first connect to your azure environment using
the bash command az login, authenticate in the opened
browser, and run the evaluation using the script simula-
tions/manage_tests.py from the directory simulations/. Then,
draw the plots using draw_evaluation_figures.py.

The results from both parts should plot the same graphs
that we presented on the paper. This is possible that the results
will vary, therefore for each plot on the paper we included
error bars that should present the range of the variation.

A.7 Experiment customization
The topology of the evaluation is flexible. Although we pre-
sented on the paper only a line-topology, we included in the
file simulations/manage_tests.py more possible topologies
that evaluate different use-cases. The different use cases that
we also examined are: changes in the throughput over time,
building a topology based on the topology of the Lightning
network, and two routes that intersect in the middle (X topol-
ogy).

A.8 Notes

A.9 Version
Based on the LaTeX template for Artifact Evaluation
V20220119.

https://github.com/saart/Twilight#how-to-install-on-a-new-azure-confidetial-computing-machine
https://github.com/saart/Twilight#how-to-install-on-a-new-azure-confidetial-computing-machine
https://github.com/saart/Twilight#how-to-install-on-a-new-azure-confidetial-computing-machine
https://www.python.org/downloads/
https://www.python.org/downloads/
https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview
https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview
https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets
	Models
	Security, privacy, and ethical concerns

	Installation
	Experiment workflow
	Evaluation and expected results
	Experiment customization
	Notes
	Version


