ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Silent Bugs Matter: A Study of
Compiler-Introduced Security Bugs

Jianhao Xu'! Kangjie Lu? Zhengjie Du' Zhu Ding' Linke Li' Qiushi Wu? Mathias Payer® Bing Mao'

I'State Key Laboratory for Novel Software Technology, Nanjing University

2University of Minnesota

A Artifact Appendix

A.1 Abstract

This artifact provides a dataset of Compiler-Introduced Se-
curity Bugs (CISBs). Our dataset comprises various types of
CISBs, which we manually identified from GCC and Clang
Bugzilla reports and Linux git history. We organize these
CISBs in a taxonomy based on their root causes, formation,
and security impacts. Additionally, we include test cases and
their triggering oracles for all the reproduced CISBs. Please
note that the user study data cannot be shared due to ethical
considerations. We have promised our participants that we
will only share statistics of their data.

To validate the results of our paper, we also prepare scripts
to obtain statistics on the bugs in our dataset, reproduce the
evaluation of compiler mitigations based on our dataset, and
obtain statistics on the targeted bugs in our dataset for auto-
matic prevention works in a console.

The minimum required disk space for the program is ap-
proximately 20 GB. We have tested it on Ubuntu 20.04. The
software prerequisite for the program is an operating system
that can run Docker and supports Ubuntu 20.04 as a container
image. The whole experiment takes about 3 human-hours and
60-70 compute-hours.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The included scripts should not pose a greater risk to evalua-
tors than regular benign Python scripts when running them.

A.2.2 How to access

The aritifact and dataset can be got from Github
https://github.com/HO0wl/CISB-dataset/tree/
aac22565c96744a13£0786854b3257d64421acef.

3EPFL

A.2.3 Hardware dependencies

To run our evaluation, a x64 machine with a network connec-
tion is required.

A.2.4 Software dependencies

To evaluate the artifact, you need an operating system that can
run Docker and supports Ubuntu 20.04 as a container image.

A.2.5 Benchmarks

Please note that running one experiment requires SPEC CPU
2006, which is not provided as it is not a free software. Re-
viewers will need to obtain their own copy of SPEC CPU
2006 to run this experiment.

A.3 Set-up

We provide a Dockerfile that automatically downloads the
dataset and evaluation materials, as well as installs all the
necessary software requirements.

Instructions for downloading and using the Dockerfile can
be found on the README page https://github.com/HOwl/
CISB-datasett#aritifact-setup.

A.3.1 Installation

After installing the Docker container from the Dockerfile,
the dependencies and main artifact will be automatically pre-
pared.

A.3.2 Basic Test

A basic functionality test can be easily executed by running
the Python script ’check-compiler.py’ using the command
"python3 check-compiler.py’. Upon successful execu-
tion, the script will output a list of notes indicating that each
compiler used has been installed correctly. You can find this
script in the main directory of the Git repository https:
//raw.githubusercontent.com/HOwl/CISB-dataset/


https://github.com/H0w1/CISB-dataset/tree/aac22565c96744a13f0786854b3257d64421acef
https://github.com/H0w1/CISB-dataset/tree/aac22565c96744a13f0786854b3257d64421acef
https://github.com/H0w1/CISB-dataset#aritifact-setup
https://github.com/H0w1/CISB-dataset#aritifact-setup
https://raw.githubusercontent.com/H0w1/CISB-dataset/b122ac42ff52ecb59b94a319c4558b1275cc9166/check-compiler.py
https://raw.githubusercontent.com/H0w1/CISB-dataset/b122ac42ff52ecb59b94a319c4558b1275cc9166/check-compiler.py

bl22ac42££52ecb59094a319c4558b1275¢cc9166/
check-compiler.py.

A.4 Evaluation workflow

The overall workflow comprises the following steps:

1.
2.

Obtain the Dockerfile;

Obtain the dataset and test scripts and install the neces-
sary dependencies automatically using the Dockerfile;

Execute a Python script to check the statistics of CISBs
in the dataset;

Execute scripts and review some CISB details in the
dataset to evaluate the effectiveness of current mitiga-
tions and the performance overhead of current compiler
mitigations;

. Execute a Python script to obtain statistics on the per-

centage of CISBs in our dataset that can be targeted
by automatic prevention works. Check the statistics by
reviewing related CISBs.

A.4.1 Major Claims

(C1): We identify a large set of different kinds of CISB in the

real world. This is proven by the CISBs in the dataset.
The statistic of these bugs can be viewed by running the
script ’statistic.py’.

(C2): We investigate and show the risks of existing mitiga-

tions. Specifically, (i) we show CISB prevention per-
formed by programmers is risky, derived from real cases;
(ii) we perform a comprehensive evaluation of existing
mitigations provided by compilers, with our dataset. We
can prove (i) by pointing to the existence of a few bugs in
our dataset. As for (ii), we can provide the script ((’statis-
tic.py’)) we used to re-run the analysis and generate
Table 6 (an evaluation of the mitigations provided by the
compiler.)

(C3): The CISBs we studied have not been extensively stud-

ied before. This is proven by the script (’statistic.py’)
to get the results shown in Table 7, which shows the
statistics of CISBs that can theoretically be prevented by
automatic prevention works.

A.4.2 Experiments

We provide a guide of the experiments in the Github
repository. https://github.com/H0wl/CISB-dataset#
aritifact-experiments

(E1): [CISB statistics] [30 human-minutes + 1 compute-

second]: Execute the Python script to obtain the statistics
of CISBs in our dataset. Check the dataset and script for
mistakes. The result should be in line with the data in
Figure 2 and Figure 3 of the paper.

(E2): [Evaulation of mitigations] [30 human-minutes + 60-
70 compute-hours]: (i) Review a list of bugs where
the prevention performed by programmers failed. This
list can be obtained by executing a script. It takes one
compute-second. (ii) Run a script to obtain statistics
on the effectiveness of compiler mitigations. It takes
about two compute-minutes. (iii) Run scripts to measure
the overhead of different compiler prevention strategies
using the SPEC CPU 2006 benchmark. It takes about
60 compute-hours. For (i), the expected result is those
CISBs exist. For (ii) and (iii), the output results should
be in line with the data shown in Table 6 of the paper.

(E3): [Target bugs of automatic prevention works] [2 human-
hours + 2 compute-minutes]: (i) Execute the script to
obtain the statistics of CISBs that can theoretically be
prevented by automatic prevention works. (ii) Check the
lists of CISBs we summarized and shown in the script.
For (i), the result should be in line with the data in Figure
7 of the paper. For (ii), these bugs should be within the
scope of the corresponding prevention work.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.


https://raw.githubusercontent.com/H0w1/CISB-dataset/b122ac42ff52ecb59b94a319c4558b1275cc9166/check-compiler.py
https://raw.githubusercontent.com/H0w1/CISB-dataset/b122ac42ff52ecb59b94a319c4558b1275cc9166/check-compiler.py
https://github.com/H0w1/CISB-dataset#aritifact-experiments
https://github.com/H0w1/CISB-dataset#aritifact-experiments
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


