
USENIX’23 Artifact Appendix:
Trojan Source: Invisible Vulnerabilities

Nicholas Boucher & Ross Anderson

A Artifact Appendix

A.1 Abstract
We provide a repository with proofs-of-concept implementing
Trojan Source attacks in C, C++, C#, JavaScript, Java, Rust,
Go, Python, SQL, Bash, Assembly, and Solidity. When viewed
and compiled using vulnerable tools, these short proof-of-
concept programs will output different values when executed
than would be expected from reading the rendered source
code.

A.2 Description & Requirements
Our paper describes a manner of encoding source code that
can hide malicious logic in a manner that is not rendered to
the user. Our artifact is a collection of proofs-of-concept, for
which validation will take the form of verifying that the proofs-
of-concept visually match the claimed rendering described in
the paper and output the same adversarial logic when executed
as described in the paper.

A.2.1 Security, privacy, and ethical concerns

The code provided does not take destructive action. While ex-
ecution of the provided programs will output different values
than expected from reading the rendered source code, view-
ing, compiling, and executing the provided code is designed
to have no negative consequences for the reviewer.

A.2.2 How to access

The artifact is provided as a GitHub repository:
https://github.com/nickboucher/trojan-source/
tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

Validating this artifact will required opening the proofs-of-
concept programs any vulnerable language (Table 2 of the
paper) in a vulnerable code viewer (Table 3 of the paper). We

recommend C viewed with Visual Studio Code (v1.61) and
compiled with clang (v12.0.*), and these tools are reasonably
cross-platform.

Our experiments were repeated across Window 10 build
19043, MacOS Big Sur, and Ubuntu 20.04, although we antici-
pate that any modern version of Windows, MacOS, or Ubuntu
will work.

A.2.5 Benchmarks

None

A.3 Set-up

Clone the artifact repository.

A.3.1 Installation

Install at least one vulnerable compiler and code viewer as
listed Section A.2.4.

A.3.2 Basic Test

Validate that C/commenting-out.c is rendered as shown in
Figure 4 of the paper when opened in a vulnerable editor such
as Visual Studio Code (v1.61)

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): Trojan Source attacks produce different outputs when
executing compiled programs written with Trojan Source
techniques than would be expected from the rendered
source code (absent any defenses).

A.4.2 Experiments

(E1): [10 human-minutes + .01 compute-hours + <1GB
disk]:
How to: Open each of the proofs-of-concept in the C
sub directory of the artifact repository using a vulnerable
language and compiler as described in Section A.2.4.
Confirm that the code is visualized as shown in Figure 4

https://github.com/nickboucher/trojan-source/tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7
https://github.com/nickboucher/trojan-source/tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7
https://github.com/nickboucher/trojan-source/tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7#languages
https://github.com/nickboucher/trojan-source/tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7#code-viewers
https://code.visualstudio.com/updates/v1_61
https://releases.llvm.org/
https://github.com/nickboucher/trojan-source/tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7
https://github.com/nickboucher/trojan-source/tree/e3dc153fcf465f4a84424ea874ff39be29adb1f7/C/commenting-out.c
https://code.visualstudio.com/updates/v1_61


of the paper. Compile the code, and confirm that the out-
put matches the output claimed in the paper and differs
from what would be expected from reading the rendered
source code.
Preparation: Complete the software dependency instal-
lations described above.
Execution: Compile and execute the proofs-of concept,
with e.g. clang commenting-out.c && ./a.out.
Results: The output should match Section 4.2 of the
paper.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


