
USENIX’23 Artifact Appendix: Credit Karma: Understanding Security
Implications of Exposed Cloud Services through Automated Capability

Inference

Xueqiang Wang
University of Central Florida

Yuqiong Sun
Meta

Susanta Nanda
ServiceNow

XiaoFeng Wang
Indiana University Bloomington

A Artifact Appendix

A.1 Abstract

The submission pertains to PrivRuler, a tool utilized in the
research paper titled "Credit Karma: Understanding Security
Implications of Exposed Cloud Services through Automated
Capability Inference." PrivRuler comprises two key compo-
nents. The first one, AppAnalysis, is a static app analysis
component that extracts cloud service credentials and usages
from mobile applications. The second component, Cloud-
Probe, takes the output of AppAnalysis as input and probes
the associated cloud services to infer the additional capabili-
ties granted to mobile applications.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

The AppAnalysis component runs as a Java program on the
local machine, and it does not alter any system settings that
might impact security, nor does it transmit any data to backend
servers.

The CloudProbe component operates within an Android
emulator or a test Android device, allowing it to probe cloud
services and infer the capabilities associated with a specific
cloud credential. In this submission, we established a test
credential on our AWS accounts, ensuring that running the
CloudProbe component for functional testing would not com-
promise the privacy of any third parties. Additionally, we
minimized the risks associated with cloud service probing
using multiple strategies, as detailed in Section 3.6 of the
paper.

A.2.2 How to access

URL: https://github.com/privruler/PrivRuler-Public
Commit: 8ff0ae9c8d2611072fde0b112e71b8f662fb2507

A.2.3 Hardware dependencies

There is no hardware dependencies to run PrivRuler.

A.2.4 Software dependencies

• PrivRuler runs on basically all operating systems, in-
cluding Windows, MacOS, and Linux. We recommend
MacOS or Linux as these are the operating systems we
test more often.

• Recommend JDK Version 8
• Android Studio
• Android platform tools (e.g., adb)
• Android emulator or device of API Level < 30 (Recom-

mended 28).

A.2.5 Benchmarks

None.

A.3 Set-up

A.3.1 Installation

Install AppAnalysis. AppAnalysis is written in Java, and we
have created a script to automate the compiling and depen-
dency management process. Users can follow the below steps
to compile it.

• cd $dir/PrivRuler-Public/AppAnalysis
• ./compile.sh

Install CloudProbe. CloudProbe is delivered as an Android
app. Therefore, we need an Android emulator and Android
Studio to install it.

• Create an Android Emulator with API Level 28.
• Import CloudProbe into Android Emulator, and hit “Run
app” button to install CloudProbe on the emulator.

A.3.2 Basic Test

We created a test app folder at “$dir/PrivRuler-
Public/AppAnalysis/apks/” for basic testing.
Run AppAnalysis. Use the below commands to analyze test
apps using AppAnalysis:

• cd $dir/PrivRuler-Public/AppAnalysis
• ./analyze apks apks

The output will be stored in output/app-debug.output file.
A successful run of AppAnalysis will generate a line that
contains “cloudAPIs” keyword in the output file.
Transfer AppAnalysis result to Android emulator. Launch
the Android emulator, and run the below command to transfer
the output of AppAnalysis to the emulator.

• grep -Rh ’appName.*cloudAPIs’
$dir/PrivRuler-Public/AppAnalysis/output
» summary

• adb shell mkdir /sdcard/cloudassets
• adb push summary /sdcard/cloudassets

Run CloudProbe. In Android Studio, click the “Run app”
button to run CloudProbe. Once the app is launched in the
emulator, click the three buttons on the app UI. A success-
ful run will generate analysis results under emulator folder
/sdcard/AWSSummaries/, with each app has a file named
summary_⟨packagename⟩.json. Users may check presence
of this file by running: adb shell ls -alh $file_path.

A.4 Evaluation workflow

We do not request for a complete evaluation since it will
require analyzing over 1.3M apps (over 30TB) in storage, and
re-probe the cloud backends of 12K apps.

A.5 Notes on Reusability

In addition to inferring over-privileges in cloud services, the
artifact has the potential to be used in several other ways:

• Analyzing mobile apps for sensitive information be-
yond cloud service credentials. While the artifact’s pri-
mary focus is detecting cloud service credentials within
mobile apps, it can be customized to scan and identify
other sensitive information present within mobile apps
with ease.

• Identifying obfuscated APIs. As a part of the AppAnal-
ysis component, the code extracts fingerprints for obfus-
cated APIs by examining invariant information like the
number of arguments. The obfuscated APIs fingerprint-
ing module can be employed to analyze other obfuscated
APIs aside from cloud APIs.

• Enhancing mobile app security. By employing the
PrivRuler tool, app developers can evaluate the security
of their mobile apps and identify any potential vulnerabil-
ities in regard to cloud services, thereby enhancing their

app’s security posture and safeguarding against cyber
attacks such as data leaks.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Notes on Reusability
	Version

