
Aegis: Mitigating Targeted Bit-flip Attacks against Deep Neural
Networks

Jialai Wang∗, Ziyuan Zhang†, Meiqi Wang∗, Han Qiu∗§� , Tianwei Zhang‡,
Qi Li∗§, Zongpeng Li∗♣�, Tao Wei♠, and Chao Zhang∗§

∗Tsinghua University, †Beijing University of Posts and Telecommunications,
‡Nanyang Technological University, ♣Hangzhou Dianzi University, ♠Ant Group,

§Zhongguancun Laboratory

{wang-jl22, wang-mq22}@mails.tsinghua.edu.cn, zhangziy0421@bupt.edu.cn,
{qiuhan, qli01, zongpeng, chaoz}@tsinghua.edu.cn, tianwei.zhang@ntu.edu.sg,

lenx.wei@antgroup.com

A Artifact Appendix

A.1 Abstract

We teach you how to run our experiments in this appendix. If
you have any questions, please let us know.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

https://github.com/wjl123wjl/Aegis.git
The GitHub hash is:
95ded45538bf358ce5122a6e3ff920db25525186

A.2.3 Hardware dependencies

You need GPUs to train or run models.

A.2.4 Software dependencies

None.

A.2.5 Benchmarks

Datasets. Our source code could automatically download
the datasets, i.e., CIFAR-10, CIFAR-100, STL-10. For Tiny-
ImageNet, please download it by yourself.
Models. Our source code could train all models, and you can
directly run the scripts to train the models.

� Corresponding authors.

A.3 Set-up
A.3.1 Installation

We list the python packages and the corresponding versions to
install. Note other versions may work as well, but we haven’t
tried it.

(1) Please install python 3.6.9.
(2) Please install pytorch 1.7.0.
(3) Please install torchvision 0.8.1.
(4) Please install tensorboardX 2.5.
(5) Please install matplotlib 3.3.4.
(6) Please install tqdm 4.60.0.
(7) Please install pandas 1.1.5.
(8) Please install numpy 1.18.5.

A.3.2 Basic Test

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Aegis could effectively mitigate TBT attacks, and
adaptive TBT attacks.

(C2): Aegis could effectively mitigate TA-LBF attacks, and
adaptive TA-LBF attacks.

(C3): Aegis could effectively mitigate ProFlip attacks, and
adaptive ProFlip attacks.

A.4.2 Experiments

Before conducting experiments, you need to train all models.

• CIFAR-10: train resnet32.
(1) cd cifar10/resnet32
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh



• CIFAR-10: train vgg16.
(1) cd cifar10/vgg16
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• CIFAR-100: train resnet32.
(1) cd cifar100/resnet32
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• CIFAR-100: train vgg16.
(1) cd cifar100/vgg16
(2) Train the base model: sh train_CIFAR.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• STL-10: train resnet32.
(1) cd stl10/resnet32
(2) Train the base model: sh train_STL.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• STL-10: train vgg16.
(1) cd stl10/vgg16
(2) Train the base model: sh train_STL.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• Tiny-ImageNet: train resnet32.
(1) cd tinyimagenet/resnet32
(2) Train the base model: sh train_tinyimagenet.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

• Tiny-ImageNet: train vgg16.
(1) cd tinyimagenet/vgg16
(2) Train the base model: sh train_tinyimagenet.sh.
(3) After finishing training the base model, then train the
enhanced model: sh train_finetune_branch.sh

(E1): For TBT attacks.
(1) First enter a folder to attack the target model, e.g.,
cd ./Aegis/TBT/resnet32-cifar10/
(2) If you want to conduct the TBT attack, run the in-
struction: python3 TBT_noadaptive.py. Then, you can
observe the ASR.
(3) If you want to conduct the adaptive TBT attack, run
the instruction: python3 TBT_adaptive.py. Then, you can
observe the ASR.

(E2): For non-adaptive TA-LBF attacks. Please enter the
folder: cd TA-LBF/non-adaptive. For adaptive TA-LBF
attacks. Please enter the folder: cd TA-LBF/adaptive.
(1) on cifar10 and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_cifar10.sh
(2) on cifar10 and vgg16, run the instruction:
sh ./attack_reproduce_k=50_vgg16_cifar10.sh
(3) on cifar100 and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_cifar100.sh
(4) on cifar100 and vgg16, run the instruction:

sh ./attack_reproduce_k=50_vgg16_cifar100.sh
(5) on stl10 and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_stl10.sh
(6) on stl10 and vgg16, run the instruction:
sh ./attack_reproduce_k=50_vgg16_stl10.sh
(7) on tinyimagenet and resnet32, run the instruction:
sh ./attack_reproduce_k=50_resnet32_tinyimagenet.sh
(8) on tinyimagenet and vgg16, run the instruction:
sh ./attack_reproduce_k=50_vgg16_tinyimagenet.sh

(E3): For Proflip attacks.
(1) First enter a folder to attack the target model, e.g., cd
cd ./Aegis/ProFlip/resnet32-cifar10/
(2) If you want to conduct the ProFlip attack,
run the instruction to generate a trigger: python3
trigger_nonadaptive.py. Then, run the instruction to at-
tack: python3 CSB_nonadaptive.py. Then, you can ob-
serve the ASR.
(3) If you want to conduct the adaptive ProFlip at-
tack, run the instruction to generate a trigger: python3
trigger_adaptive.py. Then, run the instruction to attack:
python3 CSB_adaptive.py. Then, you can observe the
ASR.

A.5 Notes on Reusability
None.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


