
USENIX’23 Artifact Appendix: How the Great Firewall of China
Detects and Blocks Fully Encrypted Traffic

Mingshi Wu
GFW Report

Jackson Sippe
University of Colorado Boulder

Danesh Sivakumar
University of Maryland

Jack Burg
University of Maryland

Peter Anderson
Independent researcher

Xiaokang Wang
V2Ray Project

Kevin Bock
University of Maryland

Amir Houmansadr
University of Massachusetts Amherst

Dave Levin
University of Maryland

Eric Wustrow
University of Colorado Boulder

April 20, 2023, v1.0

A Artifact Appendix

A.1 Abstract
As introduced in the paper, we measure and characterize the
GFW’s new system for censoring fully encrypted traffic. We
find that, instead of directly defining what fully encrypted
traffic is, the censor applies crude but efficient heuristics to
exempt traffic that is unlikely to be fully encrypted traffic; it
then blocks the remaining non-exempted traffic. These heuris-
tics are based on the fingerprints of common protocols, the
fraction of set bits, and the number, fraction, and position of
printable ASCII characters. In this artifact, we provide the
data and code to support our major claims. Additionally, we
conducted a follow-up experiment to confirm that the GFW
had stopped blocking fully encrypted traffic dynamically as
of Wednesday, March 15, 2023.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

As detailed in the ethics section of our paper, our measurement
tools have already employed the best practices by default.

A.2.2 How to access

The artifact is available on GitHub: https://github.com/
gfw-report/usenixsecurity23-artifact/commit/
ad45e63b4a708bda5ce39f48fc25ebbae013ee51.

A.2.3 Hardware dependencies

We have prepared a VPS in China and a VPS in the US, on
which the AE reviewers can perform remote experiments. The
VPS in China is located in AlibabaCloud Beijing Datacenter
(AS37963), which uses one core of Intel Xeon Platinum 8163
and 1GB RAM. The VPS in the US is located in DigitalOcean

San Francisco Datacenter (AS14061), which uses one core
of Intel DO-Regular and 1GB RAM. To SSH into the VPSes,
reviewers need to install the provided credentials, as detailed
in artifacts/setup-vps/README.md.

For people other than the AE reviewers who want to per-
form experiments, they need to prepare a VPS in China and a
VPS outside of China themselves.

A.2.4 Software dependencies

The VPS in China runs Ubuntu 22.04.2 LTS (GNU/Linux
5.15.0-56-generic x86_64). The VPS in the US runs Ubuntu
20.04.3 LTS (GNU/Linux 5.4.0-88-generic x86_64). The fol-
lowing tools and environment are required:

• GNU make utility

• Go 1.17+

• Python 3.8+

In particular, the two VPSes do not require Go environment.
As detailed in README, reviewers may compile the Go code
on their local machines and copy the binaries to the VPSes.

A.2.5 Benchmarks

None.

A.3 Set-up
As detailed in artifacts/setup-vps/README.md, we have
prepared a VPS in China and a VPS in the US, on which the
AE reviewers can perform remote experiments. Since we have
installed the dependencies and required tools on the VPSes,
all reviewers need to do is to use the provided credentials
to SSH into the VPSes to run experiments. We also provide
one-click scripts, allowing reviewers to initialize test-ready
VPSes themselves. Be very cautious that running setup scripts
will disrupt other reviewers’ ongoing experiments.

https://github.com/gfw-report/usenixsecurity23-artifact/commit/ad45e63b4a708bda5ce39f48fc25ebbae013ee51
https://github.com/gfw-report/usenixsecurity23-artifact/commit/ad45e63b4a708bda5ce39f48fc25ebbae013ee51
https://github.com/gfw-report/usenixsecurity23-artifact/commit/ad45e63b4a708bda5ce39f48fc25ebbae013ee51

A.3.1 Installation

• Set up the Go environment: https://go.dev/dl/.

• Retrieve the artifacts: git clone https://github.
com/gfw-report/usenixsecurity23-artifact.

• Compile the client-side experiment tools and install
them to the CN VPS: cd artifacts/setup-vps &&
./setup-client/to_alibaba_server.sh.

• Compile the sink server and install it to
the US VPS: cd artifacts/setup-vps &&
./setup-server/to_digitalocean_server.sh.

A.3.2 Basic Test

First login to the VPS in China using the provided credentials:
ssh usenix-ae-client-china.

Then send random probes to the port 80 of the
$serverIP with the following command: echo $serverIP
| ./utils/affected-norand -p 80 -log /dev/null.

The program outputs in CSV format. If the affected
field is True, the blocking is successfully triggered. If the
affected field is False, the blocking is not triggered.

A.4 Evaluation workflow
A.4.1 Major Claims

(C0): As of Tuesday, March 7, 2023, the GFW was still
blocking random traffic. This is supported by the experi-
ment (E0).

(C1): As of Wednesday, March 15, 2023, the GFW had
stopped blocking random traffic dynamically. This is
supported by the experiment (E1).

(C2): The GFW exempts a connection if the first TCP packet
pkt satisfies: popcount(pkt)

len(pkt) ≤ 3.4 or popcount(pkt)
len(pkt) ≥ 4.6.

This is supported by the experiment (E2) described in
Section 4.1 of the paper. This detection rule is introduced
in Algorithm 1 (Ex1) and illustrated in Figure 1.d.

(C3): The GFW exempts a connection if the first six
(or more) bytes of the first TCP data packet pkt are
[0x20,0x7e]. This is supported by the experiment (E3)
described in Section 4.2 of the paper. This detection rule
is introduced in Algorithm 1 (Ex2) and illustrated in
Figure 1.a.

(C4): The GFW exempts a connection if the first TCP
data packet pkt has more than 50% of pkt’s bytes in
[0x20,0x7e]. This is supported by the experiment (E4)
described in Section 4.2 of the paper. This detection rule
is introduced in Algorithm 1 (Ex3) and illustrated in
Figure 1.b.

(C5): The GFW exempts a connection if the first TCP
data packet pkt has more than 20 contiguous bytes in
[0x20,0x7e]. This is supported by the experiment (E5)

described in Section 4.2 of the paper. This detection rule
is introduced in Algorithm 1 (Ex4) and illustrated in
Figure 1.c.

(C6): The GFW exempts a connection if the first few bytes
of the first TCP data packet pkt match the protocol
fingerprint for TLS or HTTP. This is supported by the
experiment (E6) described in Section 4.3 of the paper.
This detection rule is introduced in Algorithm 1 (Ex5)
and illustrated in Figure 1.e.

A.4.2 Experiments

Experiment E0 tests if the GFW still blocks random traffic
dynamically by sending random probes from China to a single
server in US. If the reviewers can trigger the blocking in
experiment E0, they can proceed to test experiments (E1-E6);
otherwise, they only need to run experiment E1 to further
confirm the GFW has stopped blocking random traffic.

Experiments E0 and E2-E6 follow the same testing logic:
we craft different payloads that will be either exempted or
blocked by the GFW. We send them, from VPS in China
to the VPS in US, through the GFW, to observe whether
each payload can trigger the blocking or not. If the blocking
or exemption results match with what Algorithm 1 predicts,
it shows that the GFW is indeed using the detection rule
described in Algorithm 1. For reviewers’ convenience, we
implement Algorithm 1 as utils/detect.py, which reads a
list of given payloads in hex format and writes if each payload
will be exempted by any of the detection rules.

Unless explicitly specified, all operations described below
are performed on the VPS in China. And $serverIP corre-
sponds to the IP address of the VPS in US.
(E0): [test-random] [5 human-minutes + 5 compute-

minutes]: This experiment tests if the GFW blocks ran-
dom traffic. It also familiarizes the reviewers with the
testing tools and logic.
Preparation: cd artifacts
Execution: Execute this command to generate a
random probe of 200 bytes and check if Algo-
rithm 1 thinks it will be blocked by the GFW
or not: head -c200 /dev/urandom | xxd -p -c256
| tee random.txt | ./utils/detect.py.
Execute this command to repeatedly send the probe to
the same port of the US server: cat random.txt |
./utils/affected-payload -host $serverIP -p
$serverPort.
Results: If the affected field in the program output is
True, it means that your generated probe has triggered
the blocking by the GFW. This result should be consis-
tent with what detect.py predicts.

(E1): [confirm-ceased-blocking] [15 human-minutes + 2
compute-days]: This experiment tests if the GFW has
stopped blocking random traffic dynamically. Specifi-
cally, it performs an Internet scan from a VPS machine

https://go.dev/dl/
https://github.com/gfw-report/usenixsecurity23-artifact
https://github.com/gfw-report/usenixsecurity23-artifact

in China to all 142,827 IP addresses that were previously
marked affected as of August 22, 2022. For each IP ad-
dress, The test uses two types of probes: 50-bytes of
random data and 50-bytes of zero (as the control group).
For each type of probe, the program makes up to 25 con-
nections, and when five consecutive connections to an
IP address fail, the program mark it as possibly affected.
We then remove any probes that were also marked as
affected in the control group to rule out most of the false
positives due to network failure rather than censorship.
Preparation: cd ceased-dynamic-blocking
Execution: Execute this command to perform the 2-day
test: make.
One then compares the results between the two tests us-
ing two different types of probes, to find the IP addresses
that are marked as blocked (true) in the random probe
test but marked as not blocked (false) in the zero probe
test: make compare.
Results: The number of affected IP addresses should
be as low as around six thousand out of the 142,827 IP
addresses tested. One can further test these IP addresses
recursively to make sure they are all false positives.

(E2): [test-entropy] [30 human-minutes + 30 compute-
minutes]: This experiment test if the GFW exempts
a connection whose first TCP packet pkt satisfies:
popcount(pkt)

len(pkt) ≤ 3.4 or popcount(pkt)
len(pkt) ≥ 4.6.

Preparation: cd test-entropy
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E3): [test-printable-prefixes] [15 human-minutes + 30
compute-minutes]: This experiment tests if the GFW
exempts a connection whose first six bytes are printable
characters.
Preparation: cd test-printable-prefixes
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E4): [test-printable-fraction] [15 human-minutes + 30
compute-minutes]: This experiment tests if the GFW

exempts a connection whose first TCP data packet has
more than 50% of printable characters.
Preparation: cd test-printable-fraction
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E5): [test-printable-longest-run] [15 human-minutes + 15
compute-minutes]: This experiment tests if the GFW
exempts a connection whose first TCP data packet has
more than 20 bytes of contiguous printable characters.
Preparation: cd test-printable-longest-run
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes will be exempted by the GFW; while
other probes will not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

(E6): [test-protocol-fingerprints] [15 human-minutes + 2
compute-hours]: This experiment tests if the GFW ex-
empts traffic that matches the protocol fingerprints.
Preparation: cd test-protocol-fingerprints
Execution: Execute this command to generate a list of
payloads: make. As shown in the output of detect.py,
some of the probes start with a fingerprint that will be
exempted by the GFW; while other probes do not.
Use this command to test if each probe is exempted by
the GFW: make test.
Use this to compare the blocking results against the
results predicted by the detect.py: make compare.
Results: The testing results should match with what
detect.py predicts.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

