
USENIX’23 Artefact Appendix: CAPSTONE: A Capability-based
Foundation for Trustless Secure Memory Access

Jason Zhijingcheng Yu
National University of Singapore

Conrad Watt
University of Cambridge

Aditya Badole
National University of Singapore

Trevor E. Carlson
National University of Singapore

Prateek Saxena
National University of Singapore

A Artefact Appendix

A.1 Abstract
This artefact includes the following components:

• Functional prototypes of CAPSTONE. More specifically,
those include the emulator CAPSTONEEmu, the compiler
CAPSTONECC, and the library CAPSTONELib, along
with sample source codes for the case studies discussed
in the paper that are runnable with the aforementioned
tools. This part resides under the functional subfolder.

• The GEM5 model used for evaluating CAPSTONE. This
includes the source code and the scripts for building both
the model and the benchmarks as well as for running
the experiments presented in the paper. This part resides
under the gem5 subfolder.

All the artefact components have been made publicly available
in the source format. To improve portability, reduce the impact
on the artefact user’s own system, and ease the process of
using the artefact itself, we provide the option of building and
running the artefact inside Docker containers.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Building and running this artefact are not expected to cause
security or privacy risks to the artefact user. Nor is it expected
to raise ethical concerns.

A.2.2 How to access

The artefact is available on Github at https://github.com/
jasonyu1996/capstone (revision hash: 9b5319c). Note that
this Github repository includes submodules. To download
all the included components, make sure that you supply
--recurse-submodules when you clone it, or run

git submodule update --init --recursive

afterwards.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

The platform to use this artefact on is expected to have Bash in-
stalled and support running x86-64 Docker containers (Docker
version 20 or later recommended).

A.2.5 Benchmarks

For copyright reasons, we have not included SPEC CPU 2017,
the benchmark suite used for the evaluation experiments with
the GEM5 model. The user needs to supply the benchmark
suite by themselves if they wish to run those experiments.

A.3 Set-up
We have included detailed instructions in the README.md files
in the Github repository. Below we only reproduce the brief
steps.

A.3.1 Installation

Functional prototypes Change the working directory to
functional. Build the Docker image with

./build

GEM5 model Change the working directory to gem5. Build
the GEM5 model for Capstone and the baseline model with

./run-docker build

Note that the above command will pull corank/gem5-dev
if the Docker image does not exist locally. You can pull it
manually with

docker pull corank/gem5-dev

or alternatively, build it on your own machine

https://github.com/jasonyu1996/capstone
https://github.com/jasonyu1996/capstone


cd docker-build
docker build . -t corank/gem5-dev

To build SPEC CPU 2017, place it under ./spec and apply
a patch before running the build script

(cd spec && patch -p1 \
< ../tests/capstone/speckle/spec17.patch)
./run-docker build-spec

A.3.2 Basic test

Functional prototype Test with

./run compiler/samples/dummy.c

You should be able to see the output which starts with

18: GPR 1 = Value 0
19: halted

followed by runtime statistics.

GEM5 model Run

./run-docker run-hello

The output should include

Hello gem5!

A.4 Evaluation Workflow
The evaluation workflow applies to the GEM5 model only.

A.4.1 Major Claims

(C1): In comparison to the baseline RISC-V model, the
GEM5 model for CAPSTONE exhibits overhead that
ranges from 0 to 50% across SPEC CPU 2017 work-
loads (as shown in Figure 3 in the paper).

A.4.2 Experiments

(E1): estimated 30 compute-hours (when running workloads
in parallel):
How to: Please follow the following steps to run this
experiment.
Preparation: Build both the GEM5 model and the
benchmark suite SPEC CPU 2017 following the steps
described in Section A.3.1.
Execution: Run SPEC CPU 2017 with the GEM5
model for CAPSTONE first
./run-docker run-capstone --multiproc

followed by the baseline RISC-V model
./run-docker run-baseline --multiproc

Note that the --multiproc flag can be omitted, but that
will result in the experiments being run on a single CPU
core, which would be slow and hence not recommended.
Results: The logs are available in ./outputs. To parse
the logs and produce the data shown in Figure 3 in the
paper,
./run-docker collect-results

which prints to the standard output the parsed results in
the LATEX table format.

A.5 Notes on Reusability
The behaviours of the compiler CAPSTONECC can be ad-
justed through command line flags. Please read the source
code compiler/src/main.rs or README.md for details.

For the GEM5-based evaluation, it is possible to change
the number of fast-forwarded instructions, and the num-
ber of instructions to simulate after fast-forwarding. This
is achieved by adjusting the variables GEM5_SKIP and
GEM5_LIM in scripts docker-scripts/run-capstone and
docker-scripts/run-baseline. Similarly, the size of the
node cache can be set through the variable GEM5_NCACHE.
To print more data, set GEM5_FLAGS to --debug-flags=...
with the debug flags defined in GEM5.

A.6 Version
Based on the LaTeX template for Artefact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artefact can be found at
https://secartefacts.github.io/usenixsec2023/.

https://secartefacts.github.io/usenixsec2023/

	Artefact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic test

	Evaluation Workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


