
USENIX’23 Artifact Appendix: Multi-Factor Key Derivation Function
(MFKDF) for Fast, Flexible, Secure, & Practical Key Management

Vivek Nair
UC Berkeley

vcn@berkeley.edu

Dawn Song
UC Berkeley

dawnsong@berkeley.edu

A Artifact Appendix

Multi-Factor Key Derivation Function (MFKDF)
mfkdf.com | pbkdf2.com

A.1 Abstract

We present a JavaScript library implementing all of the factors
and methods associated with the Multi-Factor Key Derivation
Function (MFKDF) proposal. The library covers all proposed
features of MFKDF, including threshold MFKDF, policy-
based MFKDF, entropy measurement, authentication, and
factor constructions for HOTP, TOTP, HMAC-SHA1, OOBA,
and more. In separate repositories, we also include centralized
and decentralized proof-of-concept web applications, along
with a browser-based benchmarking suite. These repositories
together contain about 100,000 lines of JavaScript code.

To aid evaluation, we have detailed documentation that
includes usage examples for every supported method, as well
as a series of in-depth tutorials. We have also included a unit
testing suite with 100.0% code coverage, the results of which
can be viewed online. We have compiled and hosted the demo
applications and benchmarks for easy online access, and have
included video tutorials explaining how to use them.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

Our artifact is non-destructive, but caution should be taken
when using the proof of concept applications, as they are in-
tended for demonstration purposes only and have not been
audited for security vulnerabilities. When evaluating the demo
applications, evaluators should not use credentials that they
have used or intend to use for any other application. Nothing
of value should be stored in the ETH demo wallet at this time.
We also recommend that any parties wishing to remain anony-
mous use a fictitious name and disposable email address.

A.2.2 How to access

MFKDF Library
• GitHub Repository (Stable): https://
github.com/multifactor/MFKDF/tree/
1427224a709b77312b1b03cfa79ebed7bed316ea

• Website: https://mfkdf.com (or https://pbkdf2.com)
• Documentation: https://mfkdf.com/docs
• Unit Testing Results: https://mfkdf.com/tests
• Code Coverage Report: https://mfkdf.com/coverage

Centralized Demo
• GitHub Repository (Stable): https://github.com/
multifactor/mfkdf-application-demo/tree/
37ca96c58c050e460e6a3d4d09896eae06ed2720

• Live Demo: https://demo.mfkdf.com
• Video: https://youtube.com/watch?v=cB44BMGnFIs

Decentralized Demo
• GitHub Repository (Stable): https://github.
com/multifactor/mfkdf-wallet-demo/tree/
1fbc67d2b7505b2185a8ca3ce9ba163e22ae29ab

• Live Demo: https://wallet.mfkdf.com
• Video: https://youtube.com/watch?v=u3eUsPnv7K8

Benchmarking
• GitHub Repository (Stable): https://github.
com/multifactor/mfkdf-benchmark/tree/
72b81f89818b7b68313e05f17764aadb38fb99e0

• Live Demo: https://benchmark.mfkdf.com

A.2.3 Hardware dependencies

Any system with a stable internet connection and capable
of running JavaScript code should be able to run our demo
applications and benchmarks. For consistency, the device we
used for benchmarking has an AMD Ryzen 9 5950X CPU,
NVIDIA GeForce RTX 3090 GPU, and 128GB of DDR4
RAM, although the benchmarking results almost exclusively
depend on single-core CPU performance in this case. For
the centralized demo, an iOS or Android mobile device ca-
pable of installing the Google Authenticator application is
required. The decentralized demo application can use (but
doesn’t require) a YubiKey device supporting HMAC-SHA1.

https://mfkdf.com
https://pbkdf2.com
https://github.com/multifactor/MFKDF/tree/1427224a709b77312b1b03cfa79ebed7bed316ea
https://github.com/multifactor/MFKDF/tree/1427224a709b77312b1b03cfa79ebed7bed316ea
https://github.com/multifactor/MFKDF/tree/1427224a709b77312b1b03cfa79ebed7bed316ea
https://mfkdf.com
https://pbkdf2.com
https://mfkdf.com/docs
https://mfkdf.com/tests
https://mfkdf.com/coverage
https://github.com/multifactor/mfkdf-application-demo/tree/37ca96c58c050e460e6a3d4d09896eae06ed2720
https://github.com/multifactor/mfkdf-application-demo/tree/37ca96c58c050e460e6a3d4d09896eae06ed2720
https://github.com/multifactor/mfkdf-application-demo/tree/37ca96c58c050e460e6a3d4d09896eae06ed2720
https://demo.mfkdf.com
https://youtube.com/watch?v=cB44BMGnFIs
https://github.com/multifactor/mfkdf-wallet-demo/tree/1fbc67d2b7505b2185a8ca3ce9ba163e22ae29ab
https://github.com/multifactor/mfkdf-wallet-demo/tree/1fbc67d2b7505b2185a8ca3ce9ba163e22ae29ab
https://github.com/multifactor/mfkdf-wallet-demo/tree/1fbc67d2b7505b2185a8ca3ce9ba163e22ae29ab
https://wallet.mfkdf.com
https://youtube.com/watch?v=u3eUsPnv7K8
https://github.com/multifactor/mfkdf-benchmark/tree/72b81f89818b7b68313e05f17764aadb38fb99e0
https://github.com/multifactor/mfkdf-benchmark/tree/72b81f89818b7b68313e05f17764aadb38fb99e0
https://github.com/multifactor/mfkdf-benchmark/tree/72b81f89818b7b68313e05f17764aadb38fb99e0
https://benchmark.mfkdf.com


A.2.4 Software dependencies

We expect that any device with a relatively modern web
browser (HTML5/ES6) will be able to run our benchmarks
and demo applications. Our evaluations were performed in
Chrome Browser v103.0.5060.114 on Windows 10 v21H2.

If manually building any of the packages, each repository
contains a package.json file with the names and versions of
all dependencies. Node.js and NPM are required to build and
test each package; we used Node.js v16.15.0 and NPM v8.4.0.
Running npm install in the root directory of each repository
should automatically install all of the dependencies.

A.2.5 Benchmarks

A self-contained benchmark that can run in any modern
web browser (usually in less than a minute) is available at
https://benchmark.mfkdf.com. The relevant source code
is visible in index.html. No external data is required.

A.3 Set-up
A.3.1 Installation

1. Download and install the latest version of Google Chrome
from https://www.google.com/chrome.

2. Download and install the latest LTS version of Node.js
(including NPM) from https://nodejs.org/en.

3. On a mobile device, download and install the latest version
of Google Authenticator for iOS or Android.

4. Clone our main GitHub repository by running
git clone http://github.com/multifactor/MFKDF

5. Open the root directory of the repository (cd MFKDF), and
then run npm install to download all dependencies.

6. Repeat steps 4 and 5 for each of the demo repositories if
you wish to build them instead of using the hosted versions.

A.3.2 Basic Test

If the repository and dependencies have been installed
correctly, running npm run build should successfully
compile the package (you should see a message like
webpack X.X.X compiled with X warnings in X ms).

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The MFKDF algorithms and constructions of §4–§9, as
summarized by the pseudocode given in §A, can be used
to produce a fully-functional MFKDF implementation
satisfying the stated definitions and security goals of §3.
This can be verified by experiment (E1), which runs a
test suite enforcing the specification of the paper.

(C2): MFKDF has a low computational overhead over
PBKDFs in a typical web browser. This can be verified
by experiment (E2), which runs browser-based bench-
marks for the setup and derive functions of a standard
3-of-3 MFKDF setup, a 2-of-3 threshold MFKDF setup,
and all supported authentication factor constructions.
The results can be used to verify the performance claims
of §11 of the paper, particularly figures 7 and 8.

(C3): MFKDF can be used in place of PBKDFs in common
centralized applications like password managers. Such
applications can authenticate using derived keys (see §7),
enforce arbitrarily specific derivation policies (see §9),
and are fully backward-compatible with existing popular
authentication factors like TOTP (see §5). This can be
verified by experiment (E3), which evaluates a functional
MFKDF-based password management application using
the standard Google Authenticator mobile app, and can
in turn can be used to confirm §10.1 of the paper.

(C4): MFKDF can be used to enable new applications in
situations where PBKDFs would not be used, such as in
fully-decentralized applications. The public parameters
(α) can be stored openly, such as on a public blockchain.
This can be verified by experiment (E4), which evaluates
a decentralized Ethereum and ERC20 wallet based on
MFKDF and stores parameters using IPFS and IPNS,
per the description of §10.2 of the paper.

A.4.2 Experiments

(E1): [Unit Tests] [5 human-minutes + 5 compute-minutes]:
Run the included unit testing suite to verify that all tests
are passing with 100.0% code coverage.
Preparation: Clone the main MFKDF repository and
install the dependencies as described in §A.3.1.
Execution: Simply run npm test to simultaneously
generate testing and code coverage results. The tests
assert the library’s compliance with the specifications of
the paper; you can browse the test directory to verify.
Results: After about 2 minutes, 337 passing should
be displayed with no tests failing. Below that, the code
coverage report should show 100% for all files.

(E2): [Benchmark] [5 human-minutes + 1 compute-minute]:
Run our browser-based benchmark to replicate the main
performance evaluation described in the paper.
Preparation: Visit our hosted benchmarking page at
https://benchmark.mfkdf.com (recommended), or
clone the benchmarking repository and read README.md.
Execution: Simply click “run now” to benchmark
MFKDF, threshold MFKDF, and all supported factors.
You can browse the source code to verify its validity.
Results: After about 1 minute, a results table should be
displayed that roughly matches Fig. 7 and Fig. 8 of the
paper. The scripts for generating these figures using the
benchmarking output are included in the figs directory.

https://benchmark.mfkdf.com
https://github.com/multifactor/mfkdf-benchmark/blob/main/index.html
https://www.google.com/chrome
https://nodejs.org/en
https://apps.apple.com/us/app/google-authenticator/id388497605
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en_US&gl=US
https://benchmark.mfkdf.com
https://github.com/multifactor/mfkdf-benchmark/blob/main/index.html


(E3): [Centralized Demo] [30 human-minutes]: Run our
browser-based centralized proof-of-concept to verify the
compatibility results described in §10.1 of the paper.
Preparation: Visit our hosted application demo at
https://demo.mfkdf.com (recommended), or install
the repository manually per §A.3.1 and run npm build.
Execution: Create an account on the demo application
using false information and the Google Authenticator
app on your mobile device. Use an anonymous, but valid,
email address that can receive mail. Store at least one
fictitious password, then log out. To store a password,
type a site name (e.g., google.com), then click on the cor-
rect option from the dropdown, and type a username and
password before clicking save. Log back in using your
master password and TOTP, or try the various recovery
options, and verify that you can still access the stored
password. Our demo video shows the intended usage.
Results: Confirm that the application behaves as de-
scribed in the paper. Specifically, it should be fully
backward-compatible with the Google Authenticator mo-
bile app, and that incorrect login factors can’t be used
to successfully access encrypted information. You can
verify that the source code uses MFKDF as described.

(E4): [Decentralized Demo] [30 human-minutes]: Run our
browser-based decentralized proof-of-concept to verify
the functionality described in §10.2 of the paper.
Preparation: Visit our hosted application demo at
https://wallet.mfkdf.com (recommended), or in-
stall the repository per §A.3.1 and run npm build.
Execution: Use false credentials to create a wallet for
the Ethereum mainnet or Ropsten testnet. Note the user-
name and recovery code. Optionally, you may transfer
nominal funds to the wallet address using a free Ropsten
faucet. Sign out, then log back in using your password
and recovery code, and verify that you can still access
the funds. Our demo video shows the intended usage.
Results: Confirm that the wallet behaves as described
in the paper. Verify that incorrect login factors can’t be
used to successfully access the wallet. You can check
that the source code uses MFKDF as described.
*Note: In the time between submission and publication,
the Ethereum merge caused the Ropsten testnet to shut
down. Our new and improved demo, using the Sepolia
testnet, can be found at https://ciao.mfkdf.com.

A.5 Archive of Repositories

The version of each repository evaluated by the USENIX
AEC has been tagged with “usenix-ae” on GitHub. A copy of
each of these repositories has also been uploaded to Zenodo
in their evaluated state for historical preservation:

https://doi.org/10.5281/zenodo.7859226

A.6 Notes on Reusability
The MFKDF JavaScript library was built with the express
goal of being flexible and easy to deploy in a wide variety
of new or existing applications. Its creative commons license
puts almost no restrictions on non-commercial use.

We suggest that interested parties get started by visiting
mfkdf.com to learn more, reading our tutorial series, browsing
our detailed documentation, and trying our demos.

The MFKDF library is flexible, modular, and easy to extend
with new features and factor types. If you are interested in
contributing, please read our contributing guide.

The benchmarking code and two demo applications are
all offered under the MIT license, and can be modified and
redistributed essentially without restriction.

A.7 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://demo.mfkdf.com
https://www.youtube.com/watch?v=u3eUsPnv7K8
https://github.com/multifactor/mfkdf-application-demo/tree/main/src
https://wallet.mfkdf.com
https://www.youtube.com/watch?v=cB44BMGnFIs
https://github.com/multifactor/mfkdf-wallet-demo/tree/master/app
https://ciao.mfkdf.com
https://doi.org/10.5281/zenodo.7859226
https://github.com/multifactor/MFKDF/blob/main/LICENSE
https://mfkdf.com
https://mfkdf.com/docs/tutorial-01quickstart.html
https://mfkdf.com/docs/index.html
https://mfkdf.com/demo/
https://github.com/multifactor/MFKDF/blob/main/CONTRIBUTING.md
https://github.com/multifactor/mfkdf-benchmark/blob/main/LICENSE
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Archive of Repositories
	Notes on Reusability
	Version


