
USENIX’23 Artifact Appendix:
Formal Analysis of Session-Handling in Secure Messaging:

Lifting Security from Sessions to Conversations

Cas Cremers
CISPA Helmholtz Center
for Information Security

Charlie Jacomme
Inria Paris, France

Aurora Naska
CISPA Helmholtz Center
for Information Security

A Artifact Appendix

A.1 Abstract

This artifact includes formal models and proofs of the Sig-
nal protocol with an abstraction of its session-handling layer
Sesame and ratcheting mechanism of the Double Ratchet.
We prove that Signal with a session-handling layer does not
achieve the Post-Compromise Security (PCS) guarantee, i.e,
the conversation is secure after a healing phase following
the compromise, although it holds in a single-session Sig-
nal. Following this, we propose and model a mechanism on
how to restore PCS, and in a second step how to detect clone
attackers in the conversation.

We provide four models of Signal: a) single-session Signal
from the literature, where the PCS guarantee holds, b) Signal
with its session-handling layer Sesame, where an attacker
breaks PCS, c) Signal with our PCS-fix, with the restored PCS
guarantee, and d) Signal with a clone detection mechanism,
that soundly detects the clone’s activity, i.e, detection without
any false positives.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our models and proofs are accessible for inspec-
tion and reproduction at https://github.com/
sesame-symbolic-model/sesame-model. To clone
the repository, the user should run:

$ git clone --branch "sesame-model-v1"
https://github.com/sesame-symbolic-model/
sesame-model.git

A.2.3 Hardware dependencies

We have run our experiments on a Intel(R) Xeon(R) CPU E5-
4650L 2.60GHz server with 756GB of RAM, and 4 threads
per Tamarin call. The time of the experiments’ execution
might vary depending on your machine’s CPU and RAM.

A.2.4 Software dependencies

To evaluate our models, you need the Tamarin prover1 tool
version v1.7.1. As shown in Appendix A.3.1, either you can
download a docker image with the preinstalled Tamarin prover
version, or compile it from scratch using the provided source
files of the used version.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

The following instructions have been tested on a Linux ma-
chine, and there may be slight variations on how to install and
start the docker client on other systems. There are two ways
to install the Tamarin prover and reproduce our results:

• Using Docker We provide via dockerhub an anonymous
docker with the required preinstalled version of Tamarin.

1. The user should install the Docker Engine on their
machine as instructed in https://docs.docker.
com/engine/install.

2. Fetch the provided Tamarin image via:

$ docker pull sesameproof/tamarin

3. From the cloned repository, or one that has the
Sesame folder inside of it, run:

$ docker run -it -v "$PWD:/opt/case-studies"
sesameproof/tamarin bash

1https://tamarin-prover.github.io

https://github.com/sesame-symbolic-model/sesame-model
https://github.com/sesame-symbolic-model/sesame-model
https://docs.docker.com/engine/install
https://docs.docker.com/engine/install

This should give you a shell, where the commands
tamarin-prover of the experiments can be exe-
cuted.

• Compiling Tamarin from source We provide in
the repository the folder tamarin-prover.zip
containing the source files for the correct ver-
sion of Tamarin, with installation instructions at
https://tamarin-prover.github.io/manual/
book/002_installation.html.

A.3.2 Basic Test

To test that the Tamarin Prover is installed correctly, run:

$ tamarin-prover test

You should see the following message in the terminal:
*** TEST SUMMARY ***
All tests successful.
The tamarin -prover should work as intended.
:-) happy proving (-:

A.4 Evaluation workflow
A.4.1 Major Claims

In the following we list the main properties of our formal
analysis:
(PCS in single-session): Single-session Signal (Double

Ratchet model) achieves the PCS guarantee in a
conversation between two users, i.e., the conversation
is secure after the healing phase and the clone attacker
cannot inject or decrypt new messages. In this case,
session-based and conversation-based PCS collapse and
are both proven by experiment (E1) and described in
Section 5.3.

(PCS violation in Sesame): Signal with the session-
handling layer Sesame (Sesame model) does not
achieve conversation-based PCS. We show an attack
where a clone can impersonate the victim by using the
compromised session, even though the honest parties
heal after the compromise. The violation is shown in
experiment (E2) and described in Section 5.4.

(Restored PCS): Signal with session-handling and proposed
PCS-fix from Section 4.1 (Sesame with sequential ses-
sions model) restores conversation-based PCS and locks
the attacker out of the conversation. The property is
proven in experiment (E3) and described in Section 5.5.

(Sound Clone Detection): In Sesame with sequential ses-
sions and the proposed clone detection mechanism in
Section 4.1 (Sesame with sequential sessions + warn-
ing message model), the parties can soundly detect a
clone attacker that impersonates the victim by initiating
new sessions with the compromise key. The property is
shown in experiment (E4) and described in Section 5.5.

A summary of the results is reported in Table 2 of our
paper.

A.4.2 Experiments

We now show the experiment steps needed to reproduce our
results and prove the main claims we listed in the previous
section.

Preparation Before running our experiments, the user
should have followed one of the installation steps from
Appendix A.3.1. In case of using Docker, the user runs
the command from the second step to get a shell for the
execution of tamarin-prover commands. In the second
case of compiling from source, the user opens a terminal
inside the Sesame folder in the cloned repository.

(E1): [5 human-minutes + ∼1 compute-minute]
We prove the session-based and conversation-based PCS
on the Signal model with a single-session restriction.
Execution: In the shell from the preparation step, the
user executes:
$ tamarin-prover --prove Sesame/
DoubleRatchet.spthy

Results: The user should see as a result a list with all the
proven properties of the model printed on the terminal.
In particular, notice the PCS and PCS_conversation

lemmas, which correspond to session-based and
conversation-based PCS. In addition, the results include
all other helper lemmas and sanity checks on the model.
We present in the following a snippet of the expected
output, while we provide the full results at the beginning
of the DoubleRatchet.spthy file in the repository.
==
summary of summaries:
analyzed: DoubleRatchet.spthy

...
PCS (all-traces): verified (9 steps)
StartChainPreceededByAssociate (all-traces):

verified (119 steps)
SameTidKey (all-traces): verified (597 steps)
PCS_Conversation (all-traces): verified (61 steps)
==

(E2): [5 human-minutes + 2.4 compute-seconds]
We show the attack on conversation-based PCS. An at-
tacker can perform a step in the protocol using the com-
promised session state, even though the parties have
healed after the compromise. This is possible since the
healing happens in another session of the conversation.
Execution: In the shell, the user executes:
$ tamarin-prover Sesame/
Sesame_PCSAttack.spthy

Note, that the file ./Sesame_PCSAttack.spthy con-
tains a stored proof of the attack, therefore we verify

https://tamarin-prover.github.io/manual/book/002_installation.html
https://tamarin-prover.github.io/manual/book/002_installation.html

the proof without the --prove flag.
[Optional] [5 human-minutes + ∼1 compute-minute]
Using docker: To use Tamarin in the interactive mode,
the user needs to run docker with an additional parameter
that allows access to the IP address outside of docker:
$ docker run -p 3001:3001 -it -v "$PWD:/opt/
case-studies" sesameproof/tamarin bash

Then, run Tamarin with an extra argument to make the
tool listen on any IP address:
$ tamarin-prover interactive
Sesame_PCSAttack.spthy -i=’*4’

Compiling Tamarin from source: The user needs to
run the tool in interactive mode within the directory with
the file as follows:
$ tamarin-prover interactive
Sesame_PCSAttack.spthy

In the end, in both cases the user opens the interface at
127.0.0.1:3001, loads the theory sesame with origin
source ./Sesame_PCSAttack.spthy and clicks on the
SOLVED green keyword of the attack trace.
Results: The user should see as a result a list with the
proven attack_pcs lemma printed on the terminal. The
expected output is the following:
==
summary of summaries:
analyzed: Sesame_PCSAttack.spthy

...
attack_pcs (exists -trace): verified (80 steps)
==

[Optional] In Figure 1, we show the attack trace on
conversation-based PCS.

(E3): [5 human-minutes + ∼2 compute-minutes]
We prove the session-based and conversation-based PCS
on the Signal with sequential sessions model.
Execution: In the shell from the preparation step, the
user executes:
$ tamarin-prover --prove Sesame/
Sesame_Solution_RestoredPCS.spthy

Results: The user should see as a result a list of all the
proven properties of the model printed on the terminal.
The proven properties include the session-based PCS and
PCS_conversation lemmas, as well as other helper and
sanity lemmas. We present in the following a snippet of
the expected output, while we provide the full results at
the beginning of the Sesame_Solution_RestoredPCS.
spthy file in the repository.

==
summary of summaries:
analyzed: Sesame_Solution_RestoredPCS.spthy

...
PCS (all-traces): verified (9 steps)

SameRootKeyForTid (all-traces): verified (18 steps)
StartPrev (all-traces): verified (78 steps)
distinct_tid (all-traces): verified (53 steps)
SamePartner (all-traces): verified (44 steps)
PCS_Conversation (all-traces): verified (146 steps)
==

(E4): [5 human-minutes + ∼1 compute-minute]
We prove the soundness of the clone-detection mecha-
nism on Sesame with sequential sessions and warning
message model. Informally, if an honest party detects a
clone, there indeed was an attacker that cloned the honest
device.
Execution: In the shell from the preparation step, the
user executes:
$ tamarin-prover --prove Sesame/
Sesame_CloneDetection.spthy

Results: The user should see as a result a list of all the
proven properties of the model printed on the terminal. In
particular, notice the verification of the main guarantee
cd_soundness. We present in the following a snippet of
the expected output, while we provide the full results at
the beginning of the Sesame_CloneDetection.spthy
file in the repository.
==
summary of summaries:
analyzed: Sesame_CloneDetection.spthy

...
current_origin (all-traces): verified (429 steps)
CompromiseBeforeStart (all-traces): verified (14

steps)
cd_soundness (all-traces): verified (115 steps)
==

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

Figure 1: Tamarin output graph of the attack on conversation-based PCS. The attacker can forward the state of a compromised
session after the parties have healed in another session.

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

