ARTIFACT ARTIFACT
EVALUATED EVALUATED

é;USEnIX é}uSéan
ASSOCIATION ASSOCIATION

AVAILABLE

USENIX’23 Artifact Appendix: FirmSolo: Enabling dynamic analysis of
binary Linux-based IoT kernel modules

Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele
Boston University
{jaggel, gian, megele} @bu.edu

A Artifact Appendix A.3 Set-up

A.1 Abstract A.3.1 Installation

Using the Docker:
Download the docker image from:
https://doi.org/10.5281/zenodo.7865451
Install the docker image:
docker load < firmsolo.tar.gz
git clone https://github.com/BUseclab/FirmSolo.git
cd FirmSolo
docker build -t firmsolo .
Spawn a docker container:
docker run -v $(pwd):/output --rm -it
--privileged firmsolo /bin/bash

Our artifacts include the source code and instructions about
how to install the FirmSolo prototype and use it to analyze
the binary kernel modules of IoT firmware images. We pro-
vide two examples of firmware images that can be analyzed
with FirmSolo. We also packaged FirmSolo within a docker
image along with the two downstream analysis systems (i.e.,
Firmadyne and TriforceAFL) that we used to demonstrate
FirmSolo’s utility. The docker image can run on any system
that has docker installed.

In this appendix, we describe the steps to analyze a sam-
ple firmware image using FirmSolo. The analysis process
involves extracting metadata information from the kernel
modules within the firmware image, reverse engineering the
original firmware kernel and building a custom kernel capa-
ble of loading said modules. Finally, we demonstrate how
downstream analysis tools can take advantage of FirmSolo to
analyze the kernel modules within firmware images for bugs
and vulnerabilities.

Manual Installation:

To manually install and run FirmSolo you first need to
install these dependencies:

sudo apt-get install build-essential

zliblg-dev pkg-config libglib2.0-dev
binutils-dev libboost-all-dev autoconf libtool
libssl-dev libpixman-1-dev libpython3-dev
python3-pip python3-capstone python-is-python3

A2 Description & Requirements virtualenv sudo gcc make g++ python3 python2
flex bison dwarves kmod universal-ctags fdisk
A.2.1 How to access fakeroot git dmsetup kpartx netcat-openbsd

nmap python3-psycopg2 snmp uml-utilities
util-linux vlan busybox-static postgresql wget
cscope gemu gemu-system-arm gemu-system-mips
gemu-system-mipsel gemu-utils

A.2.2 Hardware dependencies Install these python packages:

pip3 install ply anytree sympy requests

You can access the artifacts at https://github.com/
BUseclab/FirmSolo/tree/v1.0.0

None pexpect scipy
Within the FirmSolo installation directory run:
A.2.3 Software dependencies git submodule init
git submodule update
Python, Docker and Java (for Ghidra). Install Ghidra:
Follow instuctions in https://ghidra-sre.org/
A2.4 Benchmarks Installatlongulde .html
Download Triforce AFL:
For the artifact evaluation we use an example Netgear git clone https://github.com/BUseclab/TriforceAFL.git

firmware image as a benchmark (id = 1). cd TriforceAFL && make


https://github.com/BUseclab/FirmSolo/tree/v1.0.0
https://github.com/BUseclab/FirmSolo/tree/v1.0.0
https://doi.org/10.5281/zenodo.7865451
https://ghidra-sre.org/InstallationGuide.html
https://ghidra-sre.org/InstallationGuide.html

Download TriforceLinuxSyscallFuzzer:

git clone https://github.com/BUseclab/Triforce-
LinuxSyscallFuzzer.git

cd TriforceLinuxSyscallFuzzer &&
./compile_harnesses.sh

Note: The compile_harnesses.sh script will make use
of legacy (and unavailable) compiler toolchains that are cur-
rently only installed within the Docker image.

Download Firmadyne:

git clone --recursive
https://github.com/BUseclab/firmadyne.git

Download the buildroot filesystems:

https://drive.google.com/file/d/
11GiU8N1U4Nkhv-kurkoGgwmp38CM_Umg/view?usp=
share_link and download the buildroot_fs.tar.gz file within
FirmSolo’s installation directory.

Execute:
tar xvf builroot_fs.tar.gz

Finally, specify the toolchain to be used by FirmSolo.
Go into the installation directory of FirmSolo and edit
the custom_utils.py script. Within the get_toolchain
function edit the cross variable with the path(s) to your
toolchain(s).

A.3.2 Basic Test

Our basic test for FirmSolo includes statically analyzing the
kernel modules within a firmware image to extract metadata
about the original firmware kernel. Please proceed as follows:

Spawn a docker container according to Section A.3.1 and
run:

mkdir -p /output/images/

On your host download the images from
this link: https://drive.google.com/file/d/
1xzdTAz3PexQD8YWWAGTKYyQ8dQiVTGiR/view?usp=
share_link

Execute:

tar xvf examples.tar.gz

cp -r ./examples/* <work_dir>/images/
The work_dir is your work directory (e.g., . /)

Then inside your container execute:

cd /FirmSolo

python3 firmsolo.py -i 1 -s 1

1ls /output/Image_Info/
After running the 1s command you should see a file named
1.pkl within the /output/Image_Info/ directory.

A.4 Evaluation workflow
A.4.1 Major Claims

FirmSolo is a framework that exposes Linux-based binary

IoT kernel modules to downstream analysis. Below we list

and prove the claims related to the evaluation of our artifact.

(C1): FirmSolo reverse engineers the original kernel of a
firmware image and builds a new kernel supported by
QEMU that can load the kernel modules within the
firmware image. This claim is proven by experiment
(E1), described in Section 5.2, Table 2 and Figure 2 in
our paper.

(C2): Downstream analysis systems can use FirmSolo to
analyze binary firmware kernel modules for bugs and
vulnerabilities. This claim is proven in Experiments (E2)
and (E3), described in Section 5.4, Table 5 and Table 6
in our paper.

A4.2 Experiments

We assume that you use the docker image to perform the

artifact evaluation.

(E1): [Reverse Engineering] [5 human-minutes + 10
compute-minutes + SGB disk]: In this experiment Firm-
Solo extracts metadata from the binary kernel modules
of a firmware image, reverse engineers the original
firmware kernel and builds a new kernel capable of load-
ing the kernel modules within the firmware image.
Preparation: Copy the extracted file-system and kernel
of the target firmware image in the work directory.
Execution: After you install and connect to the docker
container as described in Section A.3.1, proceed to
analyze an example firmware image:

Within the docker execute:
mkdir -p /output/images/

On your host download the images from this
link (if you have not implemented the basic
test): https://drive.google.com/file/d/
1xzdTAz3PexQD8YWWAgTKYyQ8dQiVIGiR/view?
usp=share_link

Execute:

tar xvf examples.tar.gz

cp -r ./examples/* <work_dir>/images/
The work_dir is your work directory (e.g., . /)

To analyze image 1 with FirmSolo, inside your container
execute:

cd /FirmSolo

python3 firmsolo.py -i 1 -a

FirmSolo will analyze firmware image 1, reverse


https://drive.google.com/file/d/11GiU8N1U4Nkhv-kurkoGgwmp38CM_Umg/view?usp=share_link
https://drive.google.com/file/d/11GiU8N1U4Nkhv-kurkoGgwmp38CM_Umg/view?usp=share_link
https://drive.google.com/file/d/11GiU8N1U4Nkhv-kurkoGgwmp38CM_Umg/view?usp=share_link
https://drive.google.com/file/d/1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=share_link
https://drive.google.com/file/d/1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=share_link
https://drive.google.com/file/d/1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=share_link
https://drive.google.com/file/d/1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=share_link
https://drive.google.com/file/d/1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=share_link
https://drive.google.com/file/d/1xzdTAz3PexQD8YWWAg7KYyQ8dQiVTGiR/view?usp=share_link

engineer the original firmware kernel and build a new
kernel that is capable of loading the kernel modules
within image 1. FirmSolo will also find which kernel
modules can actually load and also which kernel
modules crash during emulation (if any). If any kernel
modules crashed during emulation, FirmSolo will try to
address the error by running stage 2c.

Results: 7o get information about the analyzed image
1, such as the kernel modules within the firmware
image, the kernel modules that loaded successfully using
the FirmSolo kernel, the kernel modules that crashed
during emulation and the kernel module substitutions
implemented by FirmSolo, run this command:

python3 firmsolo.py -i 1 -d

In the output you should see:
Image: 1 Total Modules: 16 Loaded Modules:
5 Crashing Modules: 0 Substitutions: 0

along with specific information about which modules
were successfully loaded, crashed, and substituted.
Note: Depending on the metadata information ex-
tracted/processed in this step (e.g., kernel symbols) this
step can take longer. However, FirmSolo caches data
about each kernel version used by the firmware images
it analyzes, which renders future runs faster.

(E2): [TriforceAFL] [1 human-minute + 1.5 compute-hour]:

In this experiment you use the TriforceAFL kernel fuzzer
to analyze the kernel modules within the target firmware
image.

Preparation: None

Execution: Setup TriforceAFL with these commands:

echo core >/proc/sys/kernel/core_pattern
cd /sys/devices/system/cpu

echo performance | tee
cpu*/cpufreq/scaling_governor

These commands are needed by AFL for improving
performance. To fuzz the kernel modules within image 1
for 30 minutes each run:

python3 ./triforceafl/triforce_run.py -i 1
-t 30m

The triforce_run.py script will analyze the binary
kernel modules within image 1 which expose an IOCTL
interface. The script will find potential IOCTL command
numbers that can be used to access these IOCTL inter-
faces and will use the command numbers found as seeds
for TriforceAFL. Image 1 has two kernel modules that
can be fuzzed (acos_nat.ko and ipv6_spi.ko). The kernel

module acos_nat.ko exposes two IOCTL interfaces and
each will be fuzzed separately. Thus the total fuzzing
time for both kernel modules will be around 90 minutes.
Results: The fuzzing results will be available in the
/output/Fuzz_Results_Cur/1 directory. To be
able to quickly test for a crash found by the fuzzer run
this command:

python3 ./triforceafl/get_fuzzing_cmd.py 1

If the fuzzer triggered any crashes for any of the [OCTL
interfaces fuzzed, the get_fuzzing_cmd. py script will
output commands that can be copy/pasted into the termi-
nal and executed to quickly test a crash. The commands
will be available under the CRASHES: section (for each
IOCTL interface) else this section will be blank.

(E3): [Firmadyne] [1 human-minute + 30 compute-minutes|:
In this experiment you use the Firmadyne dynamic analy-
sis system to analyze the kernel modules within the target
firmware image.

Preparation: None
Execution: Run the Firmadyne analysis for image 1 as
follows:

cd /firmadyne && ./experiment.sh 1

The experiment.sh script will run a full analysis
with Firmadyne; creating a file-system, detecting a
network configuration and testing the firmware kernel
modules of image 1 against exploits from ExploitDB and
the bugs found by Triforce AFL as explained in our paper.

Results: The results will be available in the
/output/firmadyne_results/1 directory.

To check if any of the exploits from Ex-
ploitDB and the TriforceAFL bugs triggered
a crash, manually inspect the serial logs under
/output/firmadyne_results/1/[remote,local]/
and /output/firmadyne_results/1l/afl/, respec-
tively.

The gemu.final.serial.log_2694_ipvé6_spi_1 file
in /output/firmadyne_results/1/afl/ should con-
tain an “Oops” message. It might be the case though
that the crash message is not present because the kernel
hangs before printing it. In this case you may need to
re-run the analysis.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.


https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


