
USENIX’23 Artifact Appendix: Lost at C: A User Study on the Security
Implications of Large Language Model Code Assistants

Gustavo Sandoval*, Hammond Pearce*, Teo Nys, Ramesh Karri, Siddharth Garg, Brendan Dolan-Gavitt
New York University

A Artifact Appendix

A.1 Abstract
This artifact contains raw user data collected during the user
study and the scripts used for study evaluation. The user data
includes (1) anonymous demographic information, (2) sub-
mitted code files, (3) the annotations to those code files per-
formed by the authors’ manual security analysis, (4) the com-
plete database record of ‘prompts’ and ‘suggestions’ by the
utilized language model (code-cushman-001 by OpenAI).
The scripts for study evaluation are written in Python version
3.10.6, and may be executed on any compatible machine.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The code executes locally on resources obtained via the arti-
fact repository. No internet or network access is used beyond
this initial download of the artifact repository and the subse-
quent installation of software dependencies (Python libraries,
see Section A.2.4).

The user study data was collected via the involvement of
human participants and was approved by New York Univer-
sity’s Institution Review Board (IRB) as #IRB-FY2022-6074.
There is no known risk for evaluators when executing this
artifact as no destructive steps are taken and no evaluator files
will be impacted.

A.2.2 How to access

Access via URL: https://zenodo.org/record/7187358

A.2.3 Hardware dependencies

No special hardware dependencies are required, only a ma-
chine capable of running Python. The authors used a computer
with 16GB of RAM and an Intel i7-10750 with Ubuntu 22.04.

A.2.4 Software dependencies

We assume that evaluation is being undertaken on a Debian-
based Linux system. The specific software dependencies are

*Equal Contribution

Python 3.10.6, virtualenv 20.13.0, and pip 20.0.2. Installation
is described under Section A.3.1.

A.2.5 Benchmarks

The user study data is provided as an input to the artifacts.
They are provided in the folder data as part of the repository
download.

A.3 Set-up

A.3.1 Installation

Ensure build-essential, Python3, pip, virtualenv, and parallel
are installed. These should be able to be installed on Debian-
based Linux systems with:

$ sudo apt-get install build-essential
$ sudo apt-get install python3 python3-pip parallel
$ sudo pip3 install virtualenv

Download the repository from the Zenodo URL. Navigate
to the root of the downloaded folder, and create and activate a
new virtual environment:

$ virtualenv venv
$ source venv/bin/activate

Now install the necessary Python libraries:

$ pip install -r requirements.txt

A.3.2 Basic Test

You can test that your system works by running the first (and
simplest) generation,

$ python plot_fig7.py

This should produce:

Created FIG7 as figures/functionality.pdf

Which you can check by opening that file and seeing that it
matches the paper.

https://zenodo.org/record/7187358


A.4 Evaluation workflow

A.4.1 Major Claims

(C1 / RQ1 - Functionality): There are systematic differ-
ences between the ‘assisted’ and the ‘control’ groups,
with the ‘assisted’ group having a small but consistent
advantage over the ‘control’ group, and the ‘autopilot’
group outperforming both. The small sample size how-
ever means that the comparison does not reach statistical
significance. These results are presented in the paper in
Section 4.2.Results and Figure 7, and reproduction is
described in Experiment E1 of this Appendix.

(C2 / RQ2 - Security ‘aggregate’): For all four cases
{CWEs/LoC over compiling functions; CWEs/LoC
over functions passing unit tests; Severe CWEs/LoC
over compiling functions; Severe CWEs/LoC over
functions that pass the unit test} the ‘assisted’ group
has fewer bugs compared to the ‘control’, with up to
a 22% lower mean for the ‘assisted’ group compared
to the ‘control’ for Severe CWEs/LoC over functions
that pass unit tests. For severe CWEs, the comparisons
are also statistically significant using non-inferiority
tests with δ = 10%. This suggests that in the aggregate
case, LLMs may provide a slight benefit to security.
These results are presented in the paper in Section
4.3.3 Topline results and Figure 8, and reproduction is
described in Experiment E2 of this Appendix.

(C3 / RQ2 - Security ‘per-function’): When examining in-
dividual functions in the user study, results vary, with
different functions being harder or easier for each group
and with some differences being statistically significant.
As a result of this analysis, it is hard to conclude how
LLM suggestions may impact the code security of any
arbitrary code-writing task (some functions are made
less buggy, some are made more, it likely depends on
the complexity of each specific function). These results
are presented in the paper in Section 4.3.4 Per-function
CWE rates, and Table 3, and reproduction is Experiment
E3 of this Appendix.

(C3 / RQ3 - Bug origin): Even though suggestions from the
LLM may contain bugs, the human developers intro-
duced a majority of the bugs present in the submitted
code from the ‘assisted’ group. These results are pre-
sented in the paper in Section 4.4 RQ3 - On the origin
of bugs.

A.4.2 Experiments

The functionality of these artifact scripts are predicated on
the completion of a user study as outlined in Preliminary 1
and the formatting of that data in Preliminary 2 as well as
bug data encoding in Preliminary 3. Should a fresh user study
not be desirable/attempted, evaluators may skip ahead to the
data analysis stage starting with Experiment E1.

Preliminaries (User study and first-pass processing):

Preliminary 1 - User study (Manual) [Approximately 1
month]: Each experiment E1-E4 implicitly relies on the
data produced by a user study following the setup of the
paper (see the paper Section 3). This would use the user
study participant files provided in the linked artifacts
repository folder study_participant_instructions.
The data produced by our user study is provided.

Preliminary 2 - First-pass data processing (Automated)
[Approximately 15 compute-minutes]: This step
converts the given user study data files into ones suitable
for the rest of the data processing pipeline. This includes
running functional tests against the study-designed test
cases and breaking the files into separate functions for
split testing (see paper Section 4.2 ‘Split Testing’) and
manual bug encoding (see Preliminary 3). Note that
executing the linked scripts ‘resets’ the bug encoding
process: as a result, the script will create a new directory
rather than overwrite the data that our study collected
(should you wish, you may manually overwrite our data
by using a copy paste).
Preparation: As per Section A.3.1.
Execution: From the functionality_tests
directory, execute ./run_all.sh. This script
creates a directory with the necessary test-
ing infrastructure for each user study file in
functionality_tests/repos/{uuid}, executes
the test suites, and saves the results to JSON files in
each directory named api_report.json (indicating
which API functions were implemented, unimple-
mented, or failed to compile), orig_testsuite.json
(the results of the basic 11-function test suite), and
ref_testsuite.json (the results of the expanded
45-function test suite).
This script will produce for each participant a direc-
tory containing the results of the split-functional test-
ing and the components of each of their submissions. It
also creates extraneous/intermediate files we removed
from our own data output folder, which can be found at
data/submitted_assignments/*.

Preliminary 3 - Bug encoding (Manual) [Approximately
66 person-hours]: To evaluate the security of the code
provided by the users, manual analysis was performed.
This involved the process described in the paper Section
4.3.1. From a technical point of view, each file in
the data/submitted_assignments/{uuid}/parts/
gen_{function}.c was read by three people who
manually looked for security relevant bugs. These
annotations are still present and may be modified
or evaluated by artifact evaluators. Once this eval-
uation is done, the bugs must be ‘typed up’ into
a sqlite database with the schema described in
bugs_and_demographics.sqlite3.



Analysis of user study data:
(E1 / RQ1 - Functionality) [<1 minute total]: This experi-

ment runs several Python scripts.
Preparation: Section A.3.1 and the preliminaries.
Execution: To see the data relevant to this claim
run the command: python plot_fig7.py. This will
produce the file figures/functionality.pdf
as well as the file data/derived_data/
functionality_stats.txt.
Results: The file figures/functionality.pdf dis-
plays the relationship between groups, and should show
how the ‘autopilot’ group appears to function better
than the ‘assisted’ group, which functions better then
the ‘control’ group. Statistically speaking, however, the
comparisons between groups for code passing basic and
expanded tests does not reach statistical significance as
shown in the functionality_stats.txt file from line
88 onwards.

(E2 / RQ2 - Security ‘aggregate’) [<1 minute total]: This
experiment runs several Python scripts.
Preparation: Section A.3.1 and the preliminaries.
Execution: To see the data relevant to this claim run
the command: python plot_fig8.py
Results: The following results will be presented in the
terminal and they will create the appropriate images for
Figure 8 of the paper:
Plotting figures/bugs_per_loc_compiled.pdf
Plotting figures/bugs_per_loc_passing.pdf
Plotting figures/bugs_per_loc_severe_compiled.pdf
Plotting figures/bugs_per_loc_severe_passing.pdf

In addition, to run the non-inferiority tests with δ =
10%, after running the script to run the figure, you
may run the script python inferiority_tests.py.
This script will produce in the command line the re-
sults that show the p-values for each of the four groups.
The two important values for the graph are the values
for Per Loc Severe Compiled and Per Loc Severe
Passing, which show that for ‘the Severe CWEs per
Line of Code Compiled’ the non-inferiority test is signif-
icant with p-value of p=0.04 and the Non-inferiority test
for the Severe CWEs per LOC passing which is p=0.06.

(E3 / RQ2 - Security ‘per-function’) [<1 minute total]:
This experiment runs several Python scripts.
Preparation: Section A.3.1 and the preliminaries.
Execution: The results for this claim are made
in a two step-process. Firstly, we derive the
main Table 3 data by the command python
generate_table3.py which will produce the
file data/derived_data/table3.tsv. Then, we
perform the non-inferiority tests by running python
inferiority_per_func.py.
Results: The statistical test results between function
group pairings are directly printed to the console. These
in conjunction with the derived table3.tsv should

match Table 3 in the paper.
(E4 / RQ3 - Bug origin) [<1 compute-minutes, up to 6

person-hours]: This experiment runs several Python
scripts and may involve a further optional human-
annotation step.
Preparation: Section A.3.1 and the preliminaries.
Execution: Demonstrating this is a two-step process.
First we run the command
python suggestion_cover.py -o
data/derived_data/suggestion_cover.html
to display the origin of code in the final output files.
There is now a human-annotation step, which is
required as determining the relationship with the
final code and the model suggestions was often
beyond simple lexical analysis. For result repro-
duction, this step may be considered optional as it
is laborious. For each bug present in each file in
data/submitted_assignments/recombined_list_
files/Active/{uuid}-list.c, one must scroll to
the given bug location in the suggestion_cover file.
Using a mouse-over, this will display the lexical origin
of the suggestion. If the reviewer agrees, then this
annotation can be recorded in the original file in the
manner described in bug_origin_all.py. The authors
thus went through each identified bug and visually
determined their origin.
Secondly, once bugs were annotated, we can then use the
command python bug_origin_all.py, which uses
grep to scan the annotated code files for the human-
annotated bugs and their origins and aggregates the statis-
tics. The script prints the results to the terminal, reporting
that 63.1 % of bugs come from human developers in the
assisted groups.
Results: Results are presented in the terminal and dis-
play the count of the origin of each bug.
We can explore the specific reasons for this further by
examining a specific bug, CWE-416, with the command
python bug_origin_cwe416.py. This will, for each
user in the assisted group, find each instance of the bug—
then reporting if the first time it appeared it was in a
suggestion or in the human’s own-written code, then
count the number of times it was suggested, accepted,
and the number of times it appeared in the final document.
The results show that for this bug, the LLM typically
suggested the bug even if it was not already present in
the user’s code.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


