
USENIX’23 Artifact Appendix: “Meta-Sift: How to Sift Out a Clean
Subset in the Presence of Data Poisoning?”

Yi Zeng1,2, Minzhou Pan1, Himanshu Jahagirdar1, Ming Jin1, Lingjuan Lyu2, and Ruoxi Jia1

1Virginia Tech, Blacksburg, VA 24061, USA
2Sony AI, Tokyo, 108-0075, Japan

A Artifact Appendix
A.1 Abstract

This artifact appendix focuses on road-mapping the three
main claims we developed in the “Meta-Sift” paper:

• Defense performance is sensitive to the purity of the
base set (referring to Takeaway #1, Section 1 and Sec-
tion 2.1): Representative works of defense methods
against data poisoning are only effective when they can
access a small, clean-held-out dataset (base set). When
infiltrated with poisoned samples, the defense effects of
these methods are significantly impaired.

• Both existing automated methods and human inspec-
tion fail to identify a clean subset with high enough
precision (referring to Takeaway #2, Section 1 and Sec-
tion 2.3, 2.4): To evaluate existing methods for iden-
tifying a clean base set from a poisoned dataset and
conducting a human study, we found that these tech-
niques cannot satisfy the necessary access to the base set
required to initiate the defenses mentioned above.

• Our proposed solution, Meta-Sift (our main contribu-
tion, referring to Takeaway #3, Section 1, the implemen-
tation of the proposed method in Section 3, and results
in Section 4.2), utilizes a new but intuitive idea that train-
ing a model on the clean portion of a (corrupted) dataset
will perform poorly on the poisoned portion and vice
versa, which is a splitting problem that helps to iden-
tify the clean samples and can be described as a bi-level
optimization (Eqn. 11, 12). We have introduced a suite
of techniques to build Meta-Sift to resolve this splitting
problem, resulting in efficient and effective solutions.

A.2 Description & Requirements

The provided artifacts focus on reproducing results with the
GTSRB dataset (smaller and easy to download). Our imple-
mentation has been tested on our server and can be accessed
via SSH, along with the required software environments and

dependencies. By running the implementation on our pro-
vided backend, you can reproduce examples of the experi-
ments that support our claims. If you choose to re-implement
everything on your hardware/software, it might require a ma-
chine with the following minimum requirements:
Hardware requirements: CPU: 1×AMD EPYC 7763 64-
Core Processor; GPU: 1×NVIDIA RTX A6000 48 GB.
Software requirements: Operating system: Linux (Ubuntu
20.04); Python 3.9; CUDA 11.8; cuDNN 8.7.0; Required
Python packages: h5py (version 3.6.0 or later); imageio (ver-
sion 2.9.0 or later); numpy (version 1.21.5 or later); Pillow
(version 9.4.0 or later); torch (version 1.13.0 or later); torchvi-
sion (version 0.14.0 or later); tqdm (version 4.64.0 or later);
jupyter notebook (version 6.4.8 or later).

A.2.1 Security, privacy, and ethical concerns

We do not collect data or fingerprints while the evaluators
use our provided backend for re-implementation. The con-
cern is not applicable if the evaluator uses their own hard-
ware/software platform.

A.2.2 How to access

We provide a stable released version of our imple-
mentation via the following stable reference of the
GitHub link: https://github.com/ruoxi-jia-group/
Meta-Sift/releases/tag/artifact. We have created an
anonymous SSH account for evaluators to access our hard-
ware platform. Please directly contact the authors for further
instructions on using our provided backend.

A.2.3 Hardware dependencies

We highly recommend the evaluators use our provided hard-
ware backend for reproducing the results.

A.2.4 Software dependencies

We have tested our artifact in Linux OS (Ubuntu 20.04), along
with Python 3.9, CUDA 11.8, and cuDNN 8.7.0. Python pack-
ages required, including h5py (version 3.6.0 or later), imageio
(version 2.9.0 or later), numpy (version 1.21.5 or later), Pil-
low (version 9.4.0 or later), torch (version 1.13.0 or later),

1

https://github.com/ruoxi-jia-group/Meta-Sift/releases/tag/artifact
https://github.com/ruoxi-jia-group/Meta-Sift/releases/tag/artifact


torchvision (version 0.14.0 or later), tqdm (version 4.64.0 or
later), and jupyter notebook (version 6.4.8 or later). Before
evaluating the artifact, please ensure all the necessary soft-
ware components and packages are installed and configured
correctly. For simplicity, we have provided the “metasift.yml”
file so that one can easily install the required environment with
Conda. Detailed instruction is listed in the GitHub release.

A.2.5 Benchmarks

Throughout our artifacts, we mainly reproduce the results
on the GTSRB dataset [1], which features traffic sign im-
ages scaled to 32×32 pixels. This dataset includes 39,209
training samples and 12,630 testing samples, both with class-
imbalanced distributions, providing a real-life set of data for
our analysis. In the “quick_start.ipynb,” we utilized a VGG-
16 model that was poisoned with BadNets backdoor attack in
“class 38” as the poison model (model structure and poisoned
parameters obtained from [2]) that will be using I-BAU [2] for
purification. In the subsequent Meta-Sift processes, we used
a ResNet-18 [3] model as the feature extractor θ for sifting.

A.3 Set-up

To prepare the environment for evaluating our artifact, one
needs to first log in to our server (contact us!) or a server
with minimum hardware configuration required. After that,
simply follow the Conda command provided in the GitHub
release will be able to set up the required environment.

A.3.1 Installation

To install the required software environment and the artifacts,
first, download all the code from the GitHub release. Once the
artifacts are downloaded, one needs to navigate to the direc-
tory using the command line and install the required software
dependencies. Meanwhile, the GTSRB dataset can be found
here. Please download the required GTSRB dataset and
put it under the “./dataset” folder. By following these steps,
one should have a properly configured environment ready for
evaluation.

A.3.2 Basic Test

Please go to the “quick_start.ipynb,” and try to run the
first block. If no error pops up, it indicates that the prerequi-
site environment has been successfully installed.

A.4 Evaluation workflow

This artifact consists of three functional parts that accounts
for three experiments:

• “./quick_start.ipynb” contains three example experi-
ments supports each claim (Takeaway #1, #2 and #3);

• “./human_exp” folder provides the tool and a Narcissus
[4] poisoned image dataset we built for human study;

• “main.py” implements our proposed method, which ac-
counts for the core contribution, and one can thoroughly
evaluate Meta-Sift with different poison settings.

A.4.1 Major Claims

Please refer to Section A.1 for a detailed recap of our claims.
Mainly, we have claimed that:
(C1): Defense effects are sensitive to the purity of the base

set (Takeaway #1 in Section 1, results in Section 2.1).
(C2): Both existing automated methods and human inspec-

tion fail to identify a clean subset with high enough pre-
cision (Takeaway #2 in Section 1, results and analysis
in Section 2.3 and 2.4).

(C3): Our proposed solution, Meta-Sift, can obtain a clean
subset with the required budget in many poison situations
(Takeaway #3 in Section 1, results in Section 4.2 or
Table 15 for the GTSRB).

A.4.2 Experiments

(E1): [1 human-minutes + 10 compute-minutes]: C1, part of
C2 (Automated methods fail to identify a pure enough
clean subset), and one experiment for C3.
How to:

• First, we reproduce one experiment in Table 1 to
support C1. The code first loads a poisoned small
VGG-16 [2] that has been poisoned with BadNets
[5] targeting class 38. The code then executes I-
BAU [2] for backdoor removal with a randomly
selected 1000-size clean base set. We can observe
that the ASR of the model is successfully mitigated.
Then, we consider a poisoned base set with 8 poi-
soned samples mixed in, and we can observe the
efficacy of the defense is largely impaired.

• Moving forward, we reproduce one experiment in
Table 2 to support C2 on automatic methods. The
notebook implements an automated sifting method
which we termed Distance to the Class-Means
(DCM), to sift out a base set and evaluate the Nor-
malized Corruption Rate (NCR) of the selected base
set. The resulting value is much larger than 0, in-
dicating that automated methods fail to identify
a clean subset with sufficient precision within the
given 1000 selection budget.

• Finally, we reproduce Meta-Sift’s result on BadNets
poisoned GTSRB to confirm C3. Upon running the
code in the notebook, we can observe that the NCR
is 0, indicating that we successfully identified a pure-
clean base set within the same 1000 budget.

Preparation: Please complete Section A.3 first.
Execution: Run “quick_start.ipynb.”
Results: Expected results are in the current notebook.

(E2): [30 human-minutes]: C2 on humans’ inability to iden-
tify the poisons with enough precision.

2

https://drive.google.com/file/d/1SKYMwrnjEyFjjc7UWTdAyAjFI_demNtD/view?usp=sharing


How to: We suggest the evaluator should not check
the visual examples in our paper before completing this
experiment for non-necessary bias. Please first go to
the “./exp_human” folder, unzip the “img.zip”, and open

“huamn_label_interface.html” with your web browser.
The interface allows human labelers to assess whether
an image is poisoned and output the results with the

“yes” or “no” button. Once one successfully goes through
all 1000 samples, the browser will automatically down-
load the “result.csv” file. Reviewers can compare these
results with the “gound_trouth.xlsx” to calculate the
false-negative rate (FNR).
Preparation: A web browser is required.
Execution: After inspection, the browser will automat-
ically download a “result.csv” file. Please copy the first
column from “result.csv” and paste it over column B,

“ground_trouth.xlsx,” to get the final FNR. One can com-
pare the results with the results in Figure 3.
Results: The results should be quite similar to our re-
sults in Figure 3, i.e., end up with high FNR.

(E3): [1 human-minutes + 20 compute-minutes]: Further
evaluation of C3 (main contribution) with representative
poisoning attack under each category.
How to: Please refer to the commands in the GitHub
release and run them in a terminal with the required
Conda environment.
Preparation: Please complete Section A.3 first.
Execution: Run commands one by one in a terminal.
Results: The sifting results over these three poison set-
tings should all end up with an NCR equal to 0 with our
proposed method at a selection budget of 1000 (default).

A.5 Notes on Reusability
In the current release, we provide a plug-in (optional) function
that allows for adopting Meta-Sift to identify a clean base set
with a specific selection budget from any dataset. When using
Meta-Sift on a new dataset, choosing hyperparameters with
care is essential. We suggest using a pseudo-poisoned dataset
by applying the Narcissus attack [4] with a 10% poison ratio
on the top of the provided dataset (i.e., despite what poison the
original dataset is poisoned with, we manually introduce the
Narcissus attack over the whole dataset). Narcissus is the most
stealthy but effective attack we have found in our empirical
study. Once you have the Narcissus poisoned dataset on top
of the given dataset, input it into Meta-Sift and fine-tune the
hyperparameters to reduce the output NCR. When you have a
set of hyperparameters that can help you achieve 0 NCR on
this pseudo-poisoned dataset, it should perform well in sifting
out a 0 NCR base set for your provided dataset.

To adjust the main hyperparameters:
“-warmup_epochs” determines the number of rounds the

model should be pre-trained on the dataset before starting the
sift. For example, in GTSRB, the model’s accuracy should
be kept around 50% after warmup, while the accuracy of a

well-trained model is over 90%.
“-batch_size” is an important parameter influencing perfor-

mance. Keeping the “batch_size” small allows the model to
be updated more frequently, which might lead to better NCR
over low-resolution datasets.

“-v_lr” determines the learning rate of the weight-assigning
network, and it should be adjusted for the dataset size. This
parameter should be as small as possible for large datasets to
prevent overfitting.

“-top_k” determines the last few layers of the model that
will be selected to compute the gradient for the virtual update.
This parameter should be adjusted according to the depth of
the model, and the larger it is, the better it is for a model with
a deep structure. In RestNet-18, this parameter is set to 15,
covering the last residual block.

“-num_sifter” controls how many sifters will be trained.
Increasing this setting improves the filtering effect but adds to
the time/memory overhead. Starting from five and gradually
growing, this parameter is recommended.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

References

[1] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The
german traffic sign recognition benchmark: a multi-class
classification competition,” in The 2011 international
joint conference on neural networks. IEEE, 2011, pp.
1453–1460.

[2] Y. Zeng, S. Chen, W. Park, Z. Mao, M. Jin, and R. Jia,
“Adversarial unlearning of backdoors via implicit hyper-
gradient,” in ICLR, 2022.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in CVPR, 2016, pp. 770–
778.

[4] Y. Zeng, M. Pan, H. A. Just, L. Lyu, M. Qiu, and R. Jia,
“Narcissus: A practical clean-label backdoor attack with
limited information,” arXiv:2204.05255, 2022.

[5] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets:
Evaluating backdooring attacks on deep neural networks,”
IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

3

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


