
Prime Match: A Privacy-Preserving Inventory Matching System

Antigoni Polychroniadou Gilad Asharov1 Benjamin Diamond Tucker Balch
Hans Buehler Richard Hua Suwen Gu

J.P. Morgan

Greg Gimler Manuela Veloso

A Artifact Appendix

A.1 Abstract
In this work, we introduce secure multiparty computation in fi-
nancial services by presenting a solution, called Prime Match,
for matching orders in a stock exchange while maintaining
the privacy of the orders. Information is revealed only if there
is a match. Our central tool is a new protocol for secure com-
parison with malicious security, which can be of independent
interest. In this artifact, we showcase the major claims of our
paper titled “Prime Match: A Privacy-Preserving Inventory
Matching System”.

A.2 Description & Requirements
Prime Match involves a server/bank and (at least) a client
which submits orders to buy or sell a particular stock/symbol,
along with the intended quantity (number of shares), to the
bank. The bank does not learn any information about what
the client is interested in on any stock that is not matched, and
likewise, the client does not learn any information on what
is available in the bank unless she/he is interested in that as
well. Only after matches are found, the bank and the client
are notified, and the joint interest is revealed.

A.2.1 Security, privacy, and ethical concerns

No concerns.

A.2.2 Hardware dependencies

Our code can run on any commodity hardware since our
implementation is targeted to a real-world application where
clients hold conventional computers. For example, for our
experiments, one of the two clients runs on an Intel Core i7
processor, with 6 cores, each 2.6GHz, and another one runs on
an Intel Core i5, with 4 cores, each 2.00 GHz. Both of them
are Windows machines. Our server runs in a Linux AWS
instance of type c5a.8xlarge, with 32 vCPUs. However, it is
possible for a reviewer to test our system by running both the
server and client(s) on the same machine. If two clients are
selected for a test on the same machine, one of the two clients
needs to be executed in incognito mode from the browser.

1Currently at Bar-Ilan University, based on work that was conducted
while at J.P. Morgan.

A.2.3 Software dependencies
For the purposes of practical convenience, adoption, and porta-
bility, our client module is entirely browser-based and written
in JavaScript. Its cryptographically intensive components are
written in the C language and compiled using Emscripten
into WebAssembly (which also runs natively in the browser).
Our server is written in Python and also executes its crypto-
graphically intensive code in C. Both components are multi-
threaded—using WebWorkers on the client side and a thread
pool on the server’s—and can execute arbitrarily many con-
current instances of the protocol in parallel (i.e., constrained
only by hardware). All players communicate by sending bi-
nary data on WebSockets. Our code is independent of the
operating system (MacOS is recommended) and can run on
any browser (Google Chrome is recommended).

A.2.4 Benchmarks
None, our code generates random inputs on the fly.

A.3 Set-up
A.3.1 Installation

Our library consists of multiple components. Its client is
written in JavaScript, while we provide both Python and
JavaScript implementations of the server. Both the Python
server and the JavaScript client use C code, which is separated
into its own folder. Next, we provide the installation guide to
install both the server and the client (the same information is
also provided in the Readme files of the repo).

Python Server Instructions:
Prerequisites.Install Python 3.8 and pip. Add ./src
to the PYTHONPATH environment variable. Run
pip3 install − r requirements.txt.

Installation. In the python folder directory execute:

mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_FLAGS_
RELEASE="-DNDEBUG -O3" -DCMAKE_SHARED_LINKER_
FLAGS_RELEASE="" ..
make

JavaScript Client Instructions:
Prerequisites. Install Yarn (tested with version v1.22.4). To
build the C components, download and install emscripten.
Installation. After installing the tools in the Prerequisites,
navigate back to the JavaScript folder directory and type yarn.
To build the WASM components, then type:

mkdir build
cd build
emcmake cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE
_C_FLAGS_RELEASE="-DNDEBUG -O3" -DCMAKE_SHARED_
LINKER_FLAGS_RELEASE="" ..
make

To build the webpack components, type yarn run build.

A.3.2 Basic Test

To run an example (1 server and 1 client) the following steps
must be followed.

1. Open a terminal at the JavaScript folder, run the Server
with the command $python −m http.server 9000 (the
server starts listening).

2. Open another terminal at the Python server,
run the application with the command
$python3 src/app.py < symbol− size> < wait− time>
e.g. $python3 src/app.py 100 40
The symbol− size refers to the number of sym-
bols/stocks, and wait− time refers to the time till the
server waits (in seconds) to start the matching process.
This means that the client has submitted 100 symbols to
be matched (or not) with the symbols of the Server.

3. Next in a browser, go to http : //localhost : 9000/dist/
and answer the prompts with the symbol− size= 100
(should match the symbol− size we entered above) and
the 1 (Short) or 0 (Long) direction/side. Short is for
selling stock, and Long is for buying a stock. The hard-
coded direction for the server is Long.

4. Initially, the client browser shows the table of sym-
bols with randomly assigned quantities and with 0
as Matched; however, when the wait− time ends, the
Matched will be updated after matching the symbols
with the symbols of the server. This will conclude a
successful execution.

A.4 Evaluation workflow
A.4.1 Major Claims

In this section, we provide the major claim of our paper. For
testing purposes, we have created a UI that differs from the
one in Figure 5 of [1], as the UI in effect is found in J.P.

Morgan’s markets portal, where Prime Match is deployed.
The markets portal has been built over many years, and it
is not available since it can reveal private information from
other applications about the bank which are not relevant to
this paper. The same holds for the trade management platform.
In particular, our code in production was integrated into the
trade management platform of the US bank, as described in
detail in the paper (See Figure 6 for our final architecture).
Table 2 of our paper is generated by running the repository
we have uploaded on the private GitHub. We summarize our
claim as follows:
(C1): Prime Match has a throughput of 10 matches per sec-

ond. This is proven by the experiment (E1) (See Sec-
tion A.4.2) described in Section 5 of our paper, whose
results are illustrated/reported in Table 2 of our paper.

A.4.2 Experiments

Our experiment is described in Section 5 in the second para-
graph of "Secure Minimum Protocol Performance".
(E1): [25 human-minutes + 10 compute-minutes + <500MB

disk]: This experiment aims to run an experiment with
two clients and verify the running times as presented in
Table 2 for 100, 200, 500, and 1000 symbols (for bank-
to-client). This is done by adjusting the symbol− size in
the command of Step 2 in Section A.3.2 per client. The
code can also run for a larger number of symbols, such
as 2000, 4000, etc. If one tests these cases, they should
ensure that the wait− time is increased to a range of 50
to 100 seconds such that there is enough time to register
the symbols of the clients before the matching process
starts.
Preparation: Install the packages as described in Sec-
tion A.3.1.
Execution: Follow all steps in Section A.3.2 but repeat
Step 3 two times (sequentially) to accommodate a second
client. Note that both clients must be initiated before
the wait− time is passed. Moreover, the second client
needs to be executed in incognito mode from the browser.
Repeat the process for different numbers of symbols.
Results: After the completion of the experiment, right-
click on the client browser to select console and check
the running time and the MB sent and received, which
are reported in the third, fifth and sixth columns of Table
2, respectively.

References

[1] Antigoni Polychroniadou, Gilad Asharov, Benjamin Dia-
mond, Tucker Balch, Hans Buehler, Richard Hua, Suwen
Gu, Greg Gimler, and Manuela Veloso. Prime match:
A privacy-preserving inventory matching system. Cryp-
tology ePrint Archive, Paper 2023/400, 2023. https:
//eprint.iacr.org/2023/400.

https://eprint.iacr.org/2023/400
https://eprint.iacr.org/2023/400

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

