
USENIX’23 Artifact Appendix: ICSPatch: Automated Vulnerability

Localization and Non-Intrusive Hotpatching in Industrial Control Systems

using Data Dependence Graphs

Prashant Hari Narayan Rajput1, Constantine Doumanidis2, Michail Maniatakos2

1NYU Tandon School of Engineering, Brooklyn, NY, USA
2New York University Abu Dhabi, Abu Dhabi, UAE

A Artifact Appendix

A.1 Abstract

This artifact contains the source code for ICSPatch, a hot-

patching tool for control application binaries on Codesys

runtime-compatible Programmable Logic Controllers (PLCs).

It can detect and patch out-of-bounds write/read, improper

input sanitization, and os command injection vulnerabilities

in control applications. It can patch these vulnerabilities via

an LKM-based (Loadable Kernel Module) patcher or through

JTAG.

Evaluating ICSPatch on a live setup requires a Codesys

Codesys runtime-compatible PLC with either a Linux OS or

JTAG connection. To facilitate a more straightforward evalu-

ation, we also allow hotpatching angr simulation instances

loaded with vulnerable memory snapshots of control applica-

tion binaries in case of missing physical devices. Furthermore,

we package ICSPatch in a Docker container to minimize the

initial setup steps, supporting multiple platforms. ICSPatch

is tested on Wago PFC 100, PFC200 for Linux-5.10.21, and

BeagleBone Black for Linux-4.19.82-ti-rt-r31.

A.2 Description & Requirements

A.2.1 How to access

All the documents and source code for ICSPatch is avail-

able on GitHub at https://github.com/momalab/

ICSPatch/tree/v1.0.

[Commit: 40803636849d24ab6a50e1c166d7522c7a1ceb6e]

A.2.2 Hardware dependencies

ICSPatch requires a 32 bit ARM architecture PLC supporting

Codesys-runtime. In addition, a readily accessible JTAG port

is also required for patching the control applications by using

JTAG. However, ICSPatch also supports LKM-based patching,

removing the need for an accessible JTAG port.

A.2.3 Software dependencies

ICSPatch is packaged in a Docker container. To run ICSPatch,

manually install Docker as explained on this https://

docs.docker.com/engine/install/ubuntu/.

In case of missing hardware requirements, utilize the

captured memory snapshots of control application binaries

(included in the repository) and evaluate ICSPatch by

hotpatching the angr simulation instance as explained

https://github.com/momalab/ICSPatch/

blob/v1.0/main/README.md.

A.2.4 Benchmarks

We create a synthetic dataset of vulnerable control appli-

cation binaries with their source code project files present

at https://github.com/momalab/ICSPatch/

tree/v1.0/experiments/iec_projects and

the corresponding memory snapshots for the WAGO

PFC 200 included in the repository at the location:

https://github.com/momalab/ICSPatch/

tree/v1.0/main/src/bin/internal. ICSPatch

can utilize the control application memory snapshots in the

evaluation mode.

A.3 Set-up

A.3.1 Installation

For installing and running ICSPatch on the Docker

container, build from the Dockerfile provided in the

repository. The steps are explained in the Instal-

lation section at https://github.com/momalab/

ICSPatch/blob/v1.0/main/README.md.

Run the following commands to build and run the docker

container.

cd ICSPatch/main

sudo docker build --pull --rm -f "Dockerfile" -

→֒ t icspatch:latest "."

https://github.com/momalab/ICSPatch/tree/v1.0
https://github.com/momalab/ICSPatch/tree/v1.0
https://github.com/momalab/ICSPatch/tree/40803636849d24ab6a50e1c166d7522c7a1ceb6e
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://github.com/momalab/ICSPatch/blob/v1.0/main/README.md
https://github.com/momalab/ICSPatch/blob/v1.0/main/README.md
https://github.com/momalab/ICSPatch/tree/v1.0/experiments/iec_projects
https://github.com/momalab/ICSPatch/tree/v1.0/experiments/iec_projects
https://github.com/momalab/ICSPatch/tree/v1.0/main/src/bin/internal
https://github.com/momalab/ICSPatch/tree/v1.0/main/src/bin/internal
https://github.com/momalab/ICSPatch/blob/v1.0/main/README.md
https://github.com/momalab/ICSPatch/blob/v1.0/main/README.md

sudo docker images // List the images

sudo docker run -it icspatch:latest

To try ICSPatch on live PLCs, please build the LKM patcher

for the target Linux Kernel.

A.3.2 Basic Test

To test the successful installation of ICSPatch, run the com-

mand sudo docker run -it icspatch:latest. If IC-

SPatch executes successfully, the following prompt will be

displayed on stdout:

Select Vulnerability:

0. improper_input

1. oob_write

2. oob_read

3. os_command

4. exit

Choice:

A.4 Evaluation Workflow

Artifacts for ICSPatch have a detailed example for

evaluating out-of-bound write in a control appli-

cation binary for desalination plants, located at

https://github.com/momalab/ICSPatch/

blob/v1.0/main/README.md in the section ICSPatch

for Evaluation.

The overall steps are as follows:

1. Run the following command to execute ICSPatch in the

Docker container and select the vulnerability for evalua-

tion by entering the corresponding choice.

sudo docker run -it icspatch:latest

2. Next, select the appropriate mode of operation for IC-

SPatch. For evaluating ICSPatch without requiring a

physical PLC, select 0, as shown:

Select Experiment:

0. Evaluate

1. Live

Choice: 0

3. Next, select the test infrastructure when ICSPatch dis-

plays the following menu on stdout.

Select Infrastructure:

0. aircraft_control

1. anaerobic_reactor

2. chemical_plant

3. desalination_plant

4. smart_grid

Choice:

4. Some infrastructure might have multiple vulnerable con-

trol application binary examples. Please select the target

control application binary for evaluation when a menu

shows up similar to this:

Select Test Sample:

0. bin/internal/chemical_plant/oob_write/

→֒ code_1

1. bin/internal/chemical_plant/oob_write/

→֒ code_2

Choice:

5. After this, ICSPatch starts loading captured memory

snapshots of the selected control application binary with

a legitimate input (used to detect crashes that only im-

pact the control application stack). After which the stdout

displays the message.

- Press Enter to continue to capture

→֒ exploit input hexdump ...

6. Press Enter to continue loading control application

memory snapshot with exploit input, which results in

displaying an output as shown below:

RULE: OUT_OF_BOUNDS_WRITE_RULE

MESSAGE: OUT-OF-BOUNDS WRITE VULNERABILITY

→֒ DETECTED

----- BLOCK DISASSEMBLY -----

Instruction # in block: 8

0xb6bbf8a0: stmhs r3!, {r1, ip}

0xb6bbf8a4: subshs r2, r2, #8

0xb6bbf8a8: stmhs r3!, {r1, ip}

0xb6bbf8ac: subshs r2, r2, #8

0xb6bbf8b0: stmhs r3!, {r1, ip}

0xb6bbf8b4: subshs r2, r2, #8

0xb6bbf8b8: stmhs r3!, {r1, ip}

0xb6bbf8bc: bhs #0xb6bbf89c

------ DEBUG INFO ------

* Instruction Address: 0xb6bbf8a0

* Exploit Memory Address: 0xb617ad5c

* Length: None

* Expression: 0x0

[*] Angr execution time of the control

→֒ application: 5.889697313308716

* Found start node: 0x83f48d0 ...

https://github.com/momalab/ICSPatch/blob/v1.0/main/README.md
https://github.com/momalab/ICSPatch/blob/v1.0/main/README.md

- Localization start address list:

→֒ [138365136] ...

----------0----------

[*] Starting exploit localization from

→֒ address 0x83f48d0 ...

[*] Start address: 0xb6193fb4 End Address:

→֒ 0xb6194018...

[*] Bounded by 0xb6193fb4 - 0xb6194018 ...

[*] Search successful for start node 0

→֒ x83f48d0 ...

[*] Detected exploit location: 0xb6193ff0:

→֒ str r6, [sp, #8]

[*] Detected exploit input: 0xb617aca0: [’0

→֒ x2’, ’0x0’, ’0x200’]

[*] Mermory value at exploit location: 0

→֒ xb617aca0: 0x00000200

----------0----------

[*] Time for localizing vulnerability:

→֒ 0.012766838073730469

* Selected vulnerability location is 0

→֒ xb6193ff0 ...

* Exploit memory location is 0xb617aca0 ...

- Press Enter to continue to patching ...

Here, RULE displays the name of the vulnerability iden-

tification rule triggered for the exploit input and the

corresponding message in MESSAGE. It also detects

the start node for DDG traversal for performing vul-

nerability localization. The start node in this example

is detected as 0x83f48d0. The traversal successfully

detects the exploit instruction location at 0xb6193ff0

and the memory location for the input (to be validated

by the patch) at 0xb617aca0.

7. Press Enter to continue patching the vulnerability, which

displays patch-related information such as the address

table base address and the memory location for an empty

location. Press Y when the prompt display:

[*] Saved patch information detected. Use

→֒ it? (Y/N):

This directs ICSPatch to use saved path information

rather than connecting to an active local patch server.

8. Finally, ICSPatch creates the patch, loads it in the angr

simulation, and verifies it. Loading the patch in the

angr simulation instance is similar to writing it into

the live PLC with the LKM patcher. So, this can success-

fully test the patch created by ICSPatch, and the overall

automated process.

9. Since the evaluation of ICSPatch does not require a con-

nected PLC, once Enter is pressed on the prompt:

- Press Enter to continue to patching live

→֒ PLC ...

ICSPatch exits after 10 seconds when failing to connect

to a local patch server deployed on a live PLC.

Instructions on GitHub also elaborate on how to use IC-

SPatch with a live PLC.

A.5 Evaluation and Expected Results

While running the experiments, as explained in Subsection

A.4, ICSPatch displays the timings (in seconds) corresponding

to every operation on the stdout. For instance,

[*] Time for localizing vulnerability:

→֒ 0.012766838073730469

It should be noted that only the vulnerability localization time

is representative of the live PLC scenario. All the other tim-

ings will change when tested with a live PLC. Furthermore,

the LKM patcher captures the timing for the critical oper-

ation of redirecting execution flow by overwriting the ldr

instruction, as explained in the paper.

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation Workflow
	Evaluation and Expected Results

