
USENIX’23 Artifact Appendix: NRDelegationAttack: Complexity DDoS
attack on DNS Recursive Resolvers

Yehuda Afek *

Tel-Aviv University
afek@tauex.tau.ac.il

Anat Bremler-Barr †

Tel-Aviv University
anatbr@tauex.tau.ac.il

Shani Stajnrod
Reichman University

shaaniba93@gmail.com

A Abstract

To fully understand the root cause of the NRDelegationAttack
and to analyze its amplification factor, we developed mini-
lab setup, disconnected from the Internet, that contains all
the components of the DNS system, a client, a resolver, and
authoritative name servers. This setup is built to analyze and
examine the behavior of a resolver (or any other component)
under the microscope. On the other hand it is not useful for
performance analysis (stress analysis).

Here we provide the code and details of this setup enabling
to reproduce our analysis. Moreover, researchers may find
it useful for farther behavioral analysis and examination of
different components in the DNS system.

A.1 Description & Requirements

DNS-FullProtocolSimulator is an Inner-Emulator environ-
ment for DNS protocol which was built as part of NRDele-
gationAttack research. DNS-FullProtocolSimulator includes
a client, resolver and three authoritative name servers. The
resolver is a BIND9 recursive resolver with both the NXNSAt-
tack patched version (BIND9 version 9.16.6) and a pre-NXNS
version (BIND9 version 9.16.2). The three authoritative name
servers are: a ‘root’, an attacker, and a malicious delegation
authoritative name servers.

Most of the NRDelegationAttack measurements were car-
ried out on a BIND9 version 9.16.6 resolver compiled to
work with the local ‘root’ authoritative name server. The
authoritative name servers are implemented with Name
Server Daemon (NSD) version 4.3.3. The clients are de-
ployed on the same machine, which was configured to send
DNS queries directly to the local recursive resolver. The
setup configuration and environment are provided in GitHub
(https://github.com/ShaniBenAtya/dnssim).

In order to use DNS-FullProtocolSimulator, a docker
docker is required.

*Member of the Checkpoint Institute of Information Security.
†The majority of this research was carried out while the author was at

Reichman University. Member of the Checkpoint Institute of Information
Security.

A.1.1 Security, privacy, and ethical concerns

To ensure that no harm may be done outside of the setup,
the environment runs locally in closed Docker container en-
vironment. It is thus important to use “–dns 127.0.0.1” flag
to configure this. Changing the “resolv.conf” configuration
inside the docker container is not enough (see Appendix A.2).

A.1.2 How to access

DNS-FullProtocolSimulator source code can be found at
DNS-FullProtocolSimulator GitHub (1.4 Tag). The environ-
ment docker image can be accessed through DockerHub (1.7
Tag).

A.1.3 Hardware dependencies

There is no hardware dependencies required for using DNS-
FullProtocolSimulator. During our research, we used an
Ubuntu computer or Virtual Machine (we recommend using
Ubuntu 20.04 or above) which is capable of running Docker
images according to "Install Docker Engine on Ubuntu" spec-
ification.

A.1.4 Software dependencies

1. Docker

2. WireShark (To install WireShark on Ubuntu use: apt
install wireshark).

3. Kcachegrind (To install Kcachegrind on Ubuntu use:
apt install kcachegrind).

A.1.5 Benchmarks

In order to conduct the experiments described in NRDele-
gationAttack paper (Section 5), the setup should contain a
resolver with a non vulnerable to NXNSAttack version (e.g.
bind-9.16.6) and at least two authoritative servers (local root
authoritative and at least one more authoritative to simulate
the “referral.com” authoritative in Figure 1). In addition, a
malicious zone file is required for the attacker authoritative
(i.e., “home.lan” server). The malicious zone file may contain

https://www.nlnetlabs.nl/projects/nsd/about/
https://github.com/ShaniBenAtya/dnssim
https://docs.docker.com/get-docker/
https://github.com/ShaniBenAtya/dnssim
https://hub.docker.com/r/shanist/dnssim
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://www.wireshark.org/
https://kcachegrind.github.io/html/Download.html


as many malicious name servers as necessary for the specific
test, we used malicious referral list with 1500 NRDelegation
name servers which all delegate the resolver to a server IP ad-
dress that is non-responsive to DNS queries through another
authoritative server (the local root server can also be used to
delegate the resolver to this IP address).

For instance, if the malicious request from the client is
“attacker.home.lan”, the malicious referral response should
include a long list of name servers. In order to create such
referral list the “/env/nsd_attack/home.lan.forward” zone file
needs to have 1500 records per one malicious request. That
is, the malicious zone file includes 1500 records for the ma-
licious request which leads to a none existent domain name
(e.g., attacker IN NS ns0...1500.fake0...1500.fake) and the
root authoritative server, which does not have any record to
the non-responsive domain name, includes a wildcard record
delegating the resolver to a non responsive IP address (e.g., *
IN A 127.0.0.89).

A.2 Set-up

The following tree structure represent relevant folders and file
in the environment with description for each one of them.

env
client ... (127.0.0.1).
resolver ... (127.0.0.1).
nsd_root ... (127.0.0.2) - Root

authoritative server
configuration folder.

lan.forward ...
Zone file for SLD server
".lan".
lan.reverse
net.forward ...
Zone file for root server
".net".
net.reverse
nsd.conf ... Configuration file for NSD,

contains the IP address of
the root server.

nsd.db ... NSD DB, for internal NSD
usage.

nsd_attack ... (127.0.0.200) “home.lan”
malicious authoritative
server configuration
folder, (which simulates
‘referral.com” server in
Figure 1).

home.lan.forward ...
Zone file for sld
".home.lan", this sld
represents the malicious
authoritative.
home.lan.reverse

nsd.conf ... Configuration file for NSD,
contains the IP address of
the malicious authoritative
server.

nsd.db ... NSD DB, for internal NSD
usage.

.3 named.conf ...
Bind9 configuration,
contains the IP address
of the local environment.

bind9_16_6, bind9_16_2 OR bind9_16_33 ...
Bind source code with
modification to use local
root server.
nsd ... NSD source code from

https://github.com/NLnetLabs/nsd,
this folder relevant in
case of changes to the
original NSD code (In our
experiment we didn’t change
this code).

A.2.1 Installation

1. Pull the docker image from Docker Hub (docker pull

shanist/dnssim:1.7).

2. Run the docker image as a container interactively so
you can control the environment (docker container

run --dns 127.0.0.1 --mount type=bind,source
=<local_folder_path>,target=/app -it shanist/

dnssim:1.7 /bin/bash).
It is important to use the dns 127.0.0.1 flag so the envi-
ronment DNS will be local, changing the resolv.conf

file inside a Docker container does not work. Note that
we are mounting <local_folder_path> to the folder
/app inside the docker container so it will be easier to
copy files to and from the docker container.

3. Now you have a terminal inside the environment.

4. In order to open another terminal for the environment
first run sudo docker container ls, look for dnssim

docker image name and copy its <CONTAINER ID>.
Then, run sudo docker exec -it <CONTAINER ID>

bash.
To open more terminals into the environment, repeat
this process.

To conduct the experiments described in NRDelegationAt-
tack paper, the setup needs to include a resolver and at least
two authoritative servers.

Environment IP address:

1. 127.0.0.1 – Client

2. 127.0.0.1 – Our own Resolver (The client and resolver
have the same IP address)



3. 127.0.0.2 – Root authoritative

4. 127.0.0.200 – “home.lan” TLD authoritative (which sim-
ulates “referral.com” server in Figure 1).

5. 127.0.0.53 – The default resolver – DO NOT USE IT
WHILE TESTING!

Authoritative Servers: Our authoritative servers are located
at “/env/nsd_root” and “/env/nsd_attack”. To use them, first
configure their zone files which are located inside their folder
and called “ZONE_NAME.forward”. After changing the zone
file a restart to the authoritative is required in order to apply
the changes.

Resolver: First, go to the resolver implementation folder
(We have bind-9.16.2 (Which is vulnerable to NXNSAttack),
Bind-9.16.6 (Which is non-vulnerable to NXNSAttack and
vulnerable to NRDelegationAttack) and bind-9.16.33 (Which
is non-vulnerable to both attacks)). You can easily replace
the Bind9 version by going to the correct Bind9 version
folder (e.g.,“/env/bind9_16_6”, “/env/bind9_16_2” or “/en-
v/bind9_16_33”) and run: make install. NOTE: The envi-
ronment is pre-installed with Bind 9.16.6 which was the main
Bind9 resolver version tested in NRDelegationAttack paper.

Starting the environment: Open three terminals in the
Docker container: First, turn on the Resolver using the fol-
lowing commands:

cd /etc
named -g -c /etc/named.conf

If there is a key-error run rndc-confgen -a and try to start
it again. If you are getting the error: “loading configuration:
Permission denied”, use the following commands to correct
the error:

chmod 777 /usr/local/etc/rndc.key
chmod 777 /usr/local/etc/bind.keys

Now, turn on the Authoritative servers in a different envi-
ronment terminal: Navigate to the Authoritative server folder
(/env/nsd_attack and /env/nsd_root), then run in each authori-
tative server folder: nsd -c nsd.conf -d -f nsd.db

If there is an error stating that the port is already in use, run
service nsd stop and start it again.

A.2.2 Basic Test

To make sure that the setup is ready and well configured, the
following steps are required:

1. Run another shell inside the docker container us-
ing docker exec -ti <container id> bash and run
tcpdump -i lo -s 65535 -w /app/dump

2. Query the resolver from within the docker container dig
firewall.home.lan and make sure that the correct IP ad-
dress is received, you should see Address: 127.0.0.207

3. Stop tcpdump (you can use ^C), Open WireShark, load the
file <local_folder_path>/dump and filter DNS requests.
You should observe the whole DNS resolution route for
the domain name requested (firewall.home.lan).

(a) firewall.home.lan query from client to resolver
(ip 127.0.0.1 to ip 127.0.0.1)

(b) Resolver query to the root server (from 127.0.0.1

to 127.0.0.2)

(c) Root server return the SLD address (from
127.0.0.2 to 127.0.0.1)

(d) Resolver query the SLD (from 127.0.0.1 to
127.0.0.200)

(e) SLD return the address for the domain name
(127.0.0.207)

(f) Resolver return the address to the client
(127.0.0.207)

NOTE: The address firewall.home.lan is configured in /

env/nsd_attack/home.lan.forward and by performing the
above test ensures that the resolver accesses the authoritative
through the root server.

A.3 Evaluation workflow
As explained in Appendix A.1.5, in order to test NRDele-
gationAttack using DNS-FullProtocolSimulator a client, a
resolver (The environment is pre-installed with Bind 9.16.6
which was the main Bind9 resolver version tested in NRDele-
gationAttack paper) and at least two authoritative servers with
pre-configured zone files are required. See Appendix A.1.5
for detailed example of such zone file configuration.

A.3.1 Major Claims

(C1): If the number of names in the referral list is large, e.g.,
1,500, then each NRDelegationAttack malicious packet
costs at least 5,600 times more CPU instructions relative
to a benign query. This is proven by experiment (E1)
below, as described in Section 5.2 and whose results are
reported in Figure 3. The reproduction (proof) of this
claim does not require significant resources of any sort,
neither compute nor memory (10 human minutes + 2
compute minutes).

(C2): The resolver exhibited a significant performance degra-
dation in its throughput measurements during the NRDel-
egationAttack. This is may be proven by experiment (E2)
below, as described in Section 6.2 and whose results are
reported in Figure 5 in the paper. While in the paper this
test and measurements were done on a cloud setup with
each DNS component implemented on a separate server,
here we show that the same test can be carried out on the
closed virtual setup. The results on this isolated virtual
setup provide an indication of the phenomena and are

https://www.wireshark.org/


not reliable as those presented in Section 6 in the paper.
The reproduction (proof) of this claim does not require
significant resources of any sort, neither compute nor
memory (20 human minutes + 4 compute minutes).

(C3): The attack is empowered mainly due to the NXNSAt-
tack mitigations: NRDelegationAttack is much worse
for NXNS-patched servers than unpatched servers (See
Section 4). This is proven by experiment (E3) below.
The reproduction (proof) of this claim does not require
significant resources of any sort, neither compute nor
memory (10 human minutes + 2 compute minutes).

(C4): The proposed NRDelegationAttack mitigation greatly
reduces the attacks effectiveness (see Section 8). This
is proven by experiment (E4) below. The reproduction
(proof) of this claim does not require significant re-
sources of any sort, neither compute nor memory (10
human minutes + 2 compute minutes).

(C5): NRDelegationAttack affects open resolvers as well as
the vendors. This claim is problematic to reproduce due
to ethical considerations, in addition, most of the open re-
solvers patched their implementations to NRDelegation-
Attack as part of the responsible disclosure procedure
(see Section 7 in the paper).

A.3.2 Experiments

For the following experiments, Resperf, Valgrind and
Kcachegrind tools are needed.
(E1): Instructions measurement experiment

Preparation: For this experiment Valgrind and
Kcachegrind are required:
First, make sure that your resolver is configured to
use Bind9.16.6 resolver which is patched to NXN-
SAttack (first run: cd /env/bind9_16_6 and then
run: make install). Turn on the resolver with the
Valgrind tool with the following command (make sure
to run the resolver from “/etc”) valgrind --tool=

callgrind named -g -c /etc/named.conf. In addition,
the malicious referral response should include a long
list of name servers, in order to create such referral
list the “/env/nsd_attack/home.lan.forward” zone
file needs to have 1500 records per one malicious
request. For example, you can create one malicious
request using a short script we provided (python /env
/reproduction/genAttackers.py) that generates the
malicious request configuration and copy its output
from the “attackerNameServers.txt” output file into
the zone file For your convenience we uploaded our
“/env/nsd_attack/home.lan.forward” zone file which
includes our attackers to “/env/reproduction” folder.
Execution: Query the resolver with a malicious query
(e.g., “dig attack0.home.lan”). Stop the resolver and
restart it using with Valgrind as explained before.
Query the resolver with a legitimate query (e.g., “dig

test.home.lan”).
Results: Copy the results file from the docker con-
tainer /etc/callgrind.VALGRIND_TEST_NUMBER (which
is the folder from which the resolver is exe-
cuted) to the host, cp /path/in/docker/callgrind
.VALGRIND_TEST_NUMBER /app/ so you could access
the file in <local_folder_path> alternatively you
can use (docker cp <CONTAINER_ID>:/path/in/docker
/callgrind.VALGRIND_TEST_NUMBER /path/in/host.
Note that the VALGRIND_TEST_NUMBER is a number given
by Valgrind. Open the results files in Kcachgrind:
first add permissions to open the file (sudo chown

USERNAME:USERNAME OUTFILE_NAME) and then open the
file: (kcachgrind ./OUTFILE_NAME).
In the tool, choose Instructions Fetch tab and record
the Incl. value of fctx_getaddresses function.
Please make sure that the “relative” button is unchecked.
Repeat this step with each file and compare the results.
Benign query results should be around 200,000 instruc-
tions, while the malicious query should have more than
2,000,000,000.

(E2): Throughput measurement experiment
Preparation: For this experiment Resperf is required:
To configure the malicious authoritative zone file (“/en-
v/nsd_attack/home.lan.forward” file) with multiple ma-
licious domain names (multiple attackers, each of them
configured as explained in E1 and multiple benign do-
main names, you can use the script we provided (python
/env/reproduction/genAttackers.py) and change the
number of attackers generated by changing the AT-
TACKERS_NUM variable (e.g. ATTACKERS_NUM
= 50). Note that the zone file length is bounded by
the file size, therefore we used only 50 different at-
tacker malicious requests in our measurements. In ad-
dition, we uploaded a script that generates a list of
names for the Resperf tool (python /env/reproduction
/genNamesToCheck.py), the script creates two output
files: “benignNamesE2.txt” for benign user domain
names and “attackerNamesE2.txt” for that attacker.
Execution: First make sure that the resolver is using
Bind 9.16.6 version (checking Bind9 version can be
done by running named -v on the resolver terminal
and changing its version can be done by running:
cd /env/bind9_16_2 and then: make install) and that
both the resolver and authoritative servers are running.
Benign and malicious users commands are being
executed from two terminals inside the docker container,
so two instances of Resperf tool are required:
The first simulates the attacker and issues queries each
time at a fixed rate, and the second tool ramps up the
benign user requests until things start to fail.
The malicious user command should be run first but
ultimately in parallel to the benign user command.
In your benign user run: resperf -d INPUT_FILE -s

https://linux.die.net/man/1/resperf
https://valgrind.org/
https://kcachegrind.github.io/html/Download.html
https://valgrind.org/
https://kcachegrind.github.io/html/Download.html
https://linux.die.net/man/1/resperf
https://linux.die.net/man/1/resperf
https://linux.die.net/man/1/resperf


127.0.0.1 -v -R -P OUTPUT_NAME.
And from the malicious user run: resperf -d

INPUT_FILE -s 127.0.0.1 -v -m 15000 -c 60 -r 0 -

R -P OUTPUT_NAME

Where: -m is the number of QPS that are sent, -c is
the duration of time in which Resperf tries to send the
queries, -r is the duration of time in which Resperf
ramps-up before sending the packets in a constant time,
we want the ramp-up to be zero and OUTPUT_NAME
is the output file name of your choice (make sure to use
different file names for each test).
The benign and malicious input files should include only
benign or malicious domain names respectively.
You should run two “sub”-experiments: First, you need
to measure the effect of the attack on benign users
throughput, in this experiment “INPUT_FILE” = “be-
nignNamesE2.txt” for benign user, and “INPUT_FILE”
= “attackerNamesE2.txt” for attacker user. Then, to
measure the resolver throughput without any attack
restart the resolver (in order to test with clean cache),
and run the experiment using the “benignNamesE2.txt”
file created using the “genNamesToCheck.py” script as
the “INPUT_FILE” to both Resperf commands.

Results: Open only the benign output files from both
“sub”-experiments using a text editor (from both the be-
nign and attacker terminal) and compare the benign user
throughput presented in the “responses_per_sec” col-
umn. A major obstacle in reproducing the experiment
was the use of docker instead of multiple clients. The
experiment required different computers to send attack
and benign queries simultaneously and was originally
done using our cloud setup environment as described
in Section 6.2 of, but using the docker forced us to use
only one machine for all the tests. Nevertheless when
performing the test within the docker, we are still able
to observe that the resolver throughput for benign users
while the attack takes place is degraded. The difference
was much smaller than in the original experiment (Sec
6.2), but it was statistically significant and can be mainly
seen at the first 10 lines of the output file (in which the at-
tack QPS is high and the resolver throughput is degraded
by more than 90% (actual_qps are around 5000 but the
responses_per_sec are around 100) or even complete
denial of service).
Nevertheless, we are still able to observe that the resolver
throughput for benign users while NRDelegationAttack
takes place is degraded. The difference was much smaller
than in the original experiment, but it was statistically
significant and can be mainly seen at the first 10 lines of
the file (in which the attack QPS is high and the resolver
throughput is degraded by more than 90% (“actual_qps”
are around 5000 but the “responses_per_sec” are around
100) or even complete denial of service).

(E3): Instructions measurement experiment - NXNSAttack
unpatched server
Preparation: For this experiment follow E1 instruc-
tions using Bind9.16.2 resolver (which is not patched
to NXNSAttack) instead of Bind9.16.6 resolver (which
is patched to NXNSAttack). Checking Bind9 version
can be done by running named -v on the resolver termi-
nal and changing its version can be done by running:
cd /env/bind9_16_2 and then: make install).
Execution: Follow E1 instructions.
Results: Follow E1 instructions. Benign query results
should be around 200,000 instructions, while the mali-
cious query should be around 200,000,000.

(E4): Instructions measurement experiment - NRDelegation-
Attack mitigation
Preparation: For this experiment follow E1 instruc-
tions using Bind9.16.33 resolver (which is not patched
to NRDelegationAttack). Checking Bind9 version can
be done by running named -v on the resolver terminal
and changing its version can be done by running: cd /

env/bind9_16_2 and then: make install).
Execution: Follow E1 instructions.
Results: Follow E1 instructions. Benign query results
should be around 200,000 instructions, while the mali-
cious query should less than 10,000,000.

Acknowledgements: The authors are grateful to the
USENIX Security artifact referees for their dedicated careful
review and discussions which have significantly improved the
artifact.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


