ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Cipherfix: Mitigating Ciphertext
Side-Channel Attacks in Software

Jan Wichelmann, Anna Pitschke, Luca Wilke, and Thomas Eisenbarth
University of Liibeck, Liibeck, Germany
{j.wichelmann, a.paetschke, L.wilke, thomas.eisenbarth} @uni-luebeck.de

A Artifact Appendix

A.1 Abstract

CIPHERFIX is a framework for finding and mitigating cipher-
text side-channel leakages in software. It combines dynamic
binary instrumentation and dynamic taint tracking to pinpoint
vulnerable code parts. Then, it hardens the binaries against
ciphertext side-channel leakage with the help of static binary
instrumentation.

This artifact comprises our source code and usage instruc-
tions. We offer prebuilt Docker images which contain all
necessary dependencies, library binaries and precompiled ex-
amples. The GitHub repository presents detailed instructions
on how to build, run and extend CIPHERFIX.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

Our source code is available at https://github.com/
UzL-ITS/Cipherfix. The commit used to reproduce the
results in the paper is 0d05fcb. The artifact contains
our dynamic analysis (static-variables, structure-
analysis and taint-tracking), the static mitigation
(static-instrumentation) and our evaluation modules
(memwrite-tracer and evaluation).

A.2.3 Hardware dependencies

For running CIPHERFIX, an AMD Zenl/Zen2/Zen3 CPU is
highly recommended (we tested on an AMD EPYC 7763 and
on an AMD EPYC 3151). Other x86 CPUs may also work,
but CIPHERFIX does not have support for all instructions (e.g.,
AVX-512), so there might be unsupported instructions and
therefore potential instabilities.

A.2.4 Software dependencies

We offer precompiled Docker images which contain all nec-
essary dependencies.

For building the whole framework and the examples from
scratch without Docker, please refer to the Prerequisites and
Compiling sections in the README.

A.2.5 Benchmarks

The example targets for evaluating the performance and
security of CIPHERFIX are located in the examples direc-
tory. The cipherfix-examples-full Docker image con-
tains precompiled binaries for all examples.

A.3 Set-up
A.3.1 Installation

As we ship the artifact as a precompiled Docker image, only
a Docker installation is required.

Our precompiled image (ghcr.io/uzl-its/cipherfix-
examples-full) was built on Zen3, which helps repro-
ducibility on other systems. For example, compilers may
check for certain CPU features and then emit instructions
which are not yet supported by our instrumentation frame-
work.

If you want to rebuild the Docker images, follow these
steps:

1. Clone the CIPHERFIX repository.
2. Run . /build-docker-images.sh to build the Docker

images. You may need sudo, if your local user is not
member of the system’s docker group.

A.3.2 Basic Test

Pull and run our precompiled Docker image:

docker run -it \
ghcr.io/uzl-its/cipherfix-examples-full


https://github.com/UzL-ITS/Cipherfix
https://github.com/UzL-ITS/Cipherfix
https://github.com/UzL-ITS/cipherfix/tree/0d05fcbe48498acc827ad0373cd7244c590b27c4
https://github.com/UzL-ITS/cipherfix#prerequisites
https://github.com/UzL-ITS/cipherfix#compiling
https://github.com/UzL-ITS/cipherfix/tree/master/examples
https://github.com/UzL-ITS/cipherfix/pkgs/container/cipherfix-examples-full
https://github.com/UzL-ITS/cipherfix/pkgs/container/cipherfix-examples-full
https://github.com/UzL-ITS/cipherfix/pkgs/container/cipherfix-examples-full

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): Dynamic Analysis
(Section 4.2.1) The static variable detection tool writes
information about static variables in the program into a
static-vars.out file.
(Sections 4.1,4.2) The static-vars.out file is sub-
sequently read by the taint tracking, which adds in-
formation about detected heap allocations and stack
frames. The taint analysis then tracks which memory
location contain secrets, and marks instructions that ac-
cessing them. All taint analysis results are written into a
taint.out file.
(Section 4.3) To aid static instrumentation, a structure
analysis tool collects basic blocks and register/flag
liveness information. The results are written into a
structure.out file.
The aforementioned files are acquired by experiment
(ED).

(C2): Static Instrumentation
(Section 5) The static instrumentation tool reads the dy-
namic analysis results and generates hardened binaries,
as shown by experiment (E2). The hardened binaries are
functionally correct.

(C3): Functional Correctness and Overhead
(Section 6.2) The hardened binaries are functionally
correct, but slower than the original ones. This is verified
in experiment (E3).

A.4.2 Experiments

In the following, we describe how to verify the claims made
in the previous section. For this, we have prepared a number
of scripts that run CIPHERFIX for two representative targets.
For the specific steps, we refer to the Running the example
targets section in the README file.
(E1): [Dynamic Analysis] [3 human-minutes + O compute-
hours + 50 MB disk]:
How to: Follow steps 1 and 2 of the Running the exam-
ple targets section in the README file.
The taint analysis may print a number of warnings and
a few errors about unknown instructions. Usually, those
can be safely ignored.
Results: The result files end up in /cipherfix/ci-
pherfix/examples/mbedtls/aes-multiround/ re-
spectively /cipherfix/cipherfix/examples/wolf-
ssl/eddsa/.
(E2): [Static Instrumentation] [10 human-minutes + 0O
compute-hours + 15 MB disk]:
How to: Follow step 3 of the Running the example tar-
gets section in the README file.
Note that the structure.out files need to be manu-
ally extended with information about heap allocations

functions, as described in the README.
Results: The static instrumentation was success-
ful when there are several .instr files in the
/cipherfix/cipherfix/examples/mbedtls/aes-
multiround/instr-fast-aesrngand /cipherfix/
cipherfix/examples/wolfssl/eddsa/instr-fast-
aesrng directories.

(E3): [Functional Correctness and Overhead] [3 human
minute + 0 compute-hours]:
How to: Follow step 4 of the Running the example tar-
gets section in the README file.
Results: The standard output shows the computed ci-
phertexts and signatures for both the original and the
hardened binaries. If the outputs are identical, the func-
tional correctness is given. The Loop time specifies the
time needed for the cryptographic computations and al-
lows computing the overhead.

A.5 Notes on Reusability

Our proof-of-concept implementation includes modules for
the dynamic analysis and the static instrumentation module,
as well as evaluation modules. Each of them has a fixed input
and output format, which is documented in the docs folder
in the repository. As long as these formats are followed, each
module can be replaced without modification of the other com-
ponents. For example, it is possible to use another dynamic
analysis engine, or an alternative binary rewriting framework
with better performance guarantees. See the Replacing Frame-
work Modules section in the README for more information.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.


https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix#running-the-example-targets
https://github.com/UzL-ITS/cipherfix/tree/master/docs
https://github.com/UzL-ITS/cipherfix#replacing-framework-modules
https://github.com/UzL-ITS/cipherfix#replacing-framework-modules
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


