
USENIX’23 Artifact Appendix: PUMM: Preventing Use-After-Free
Using Execution Unit Partitioning

Carter Yagemann
The Ohio State University*

Simon P. Chung
Georgia Institute of Technology

Brendan Saltaformaggio
Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

A Artifact Appendix

A.1 Abstract
The artifact is a code repository (with supporting documen-
tation) for PUMM, a runtime Linux defense that prevents
use-after-free vulnerabilities from being exploitable. PUMM
consists of an offline profiling phase that generates a secu-
rity profile for an online monitor that wraps libc’s memory
management functions (e.g., malloc, free, etc.).

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

The artifact should not pose any inherent security, privacy, or
ethical concerns. No preexisting data is read or transmitted
and no preexisting defenses are disabled or bypassed. If the
user decides to install software containing use-after-free vul-
nerabilities for the purposes of verifying PUMM’s security
claims, they do so at their own risk. For security and ethical
reasons, the artifact does not include any vulnerable programs.

A.2.2 How to access

The artifact is a code repository and documen-
tation that can be accessed on Github: https:
//github.com/carter-yagemann/PUMM/tree/
91e58cd5d929e25d0b83fdfd0ec3c5517e2a32e7.

A.2.3 Hardware dependencies

PUMM requires a baremetal Linux computer (virtual ma-
chines are not supported) running an Intel Core processor
(e.g., i3, i5, i7, etc.).

A.2.4 Software dependencies

The preferred environment for running PUMM is Debian
Buster, however PUMM should work with any recent version

*Work done while at the Georgia Institute of Technology.

of Debian or Ubuntu. PUMM has several software depen-
dencies, including cmake, gawk, Graph-Tool, and Linux Perf.
Users should follow the Setup section in the README.

A.2.5 Benchmarks

The primary benchmark used in the paper is a collection of
open source programs with known use-after-free vulnerabil-
ities and publicly reported steps for triggering these issues.
Reference IDs are provided in Table 1 of the paper and sup-
porting artifacts can be located by looking up the CVE in the
National Vulnerability Database1 or the issue number in the
affected program’s bug tracking website.

Additionally, performance and memory overheads are mea-
sured using the SPEC CPU 2006 standard benchmark. FFmal-
loc and MarkUs are used as baseline defenses for comparison.

A.3 Set-up
A.3.1 Installation

Users should follow the Setup section of the README.

A.3.2 Basic Test

Users should follow the Usage section of the README,
which will cover all core components of PUMM, using /bin/ls
as the target program to be protected:

1. Collecting runtime traces of the target program.

2. Generating a security profile for the target program.

3. Using PUMM’s runtime monitor (and generated profile)
to protect the target program during execution.

The README provides example terminal outputs for each
step for users to verify success. Notice that because the basic
test does not involve launching an exploit, the expected out-
come of using the online portion of PUMM is no observable
change to the target program’s behavior.

1https://nvd.nist.gov/

https://github.com/carter-yagemann/PUMM/tree/91e58cd5d929e25d0b83fdfd0ec3c5517e2a32e7
https://github.com/carter-yagemann/PUMM/tree/91e58cd5d929e25d0b83fdfd0ec3c5517e2a32e7
https://github.com/carter-yagemann/PUMM/tree/91e58cd5d929e25d0b83fdfd0ec3c5517e2a32e7
https://nvd.nist.gov/


A.4 Evaluation workflow

A.4.1 Major Claims

(C1): PUMM is able to prevent 40 real-world use-after-free
exploits targeting 26 popular open source programs. This
is proven by experiment (E1) described in Section 4.1 of
the paper and illustrated in Table 2.

(C2): PUMM prevents the same vulnerabilities as FFmal-
loc and MarkUs while aborting in fewer cases. This is
proven by experiment (E2) described in Section 4.1 of
the paper and illustrated in Table 3.

(C3): PUMM incurs 2.74% less performance overhead
than FFmalloc and 52.0% less memory overhead than
MarkUs on the SPEC CPU 2006 standard benchmark.
This is proven in experiment (E3) described in Section
4.2 of the paper and illustrated in Figures 4 and 5.

(C4): PUMM is able to prevent use-after-free exploitation in
all but 4 cases out of 3,000 synthetically generated vul-
nerabilities. This is proven by experiment (E4) described
in Section 4.3 of the paper and illustrated in Figures 8,
9, and 10.

A.4.2 Experiments

(E1): [5 human-days + 3 compute-days + 300GB storage]:
Collected vulnerable programs and triggering inputs,
record traces, generate profiles, and verify that the vul-
nerability is triggered without PUMM’s defense and then
prevented with PUMM.
Preparation: For each vulnerability in Figure 2 of the
paper, the affected software must be downloaded and
compiled. A triggering input for the program must also
be downloaded and verified to be working (e.g., by caus-
ing a segmentation fault).
Execution: PUMM should be used to generate a secu-
rity profile for the target program, using the recorded
traces.
Results: Running the target program with the trigger-
ing input and PUMM’s online monitor activated should
prevent the use-after-free from being exploitable. Notice
that the target program may still crash, so verification
requires debugging.

(E2): [4 human-hours + 30 compute-minutes + 1GB storage]:
Collected vulnerable programs and triggering inputs
should be executed with PUMM, MarkUs, and FFmalloc
to observe whether the vulnerability is exploitable.
Preparation: Download and compile FFmalloc and
MarkUs. Dataset preparation is covered in E1.
Execution: The vulnerable program should be executed
with the triggering input for each defense.
Results: Running the target program with the trigger-
ing input and PUMM’s online monitor activated should
prevent the use-after-free from being exploitable. Notice
that the target program may still crash, so verification

requires debugging.
(E3): [2 human-hours + 2 compute-hours + 50GB stor-

age]: Compare the runtime and memory overheads of
PUMM, FFmalloc, and MarkUs using the SPEC CPU
2006 benchmark.
Preparation: Download and compile SPEC CPU 2006.
Execution: Run the benchmark with no evaluated de-
fenses enabled to establish a baseline. Then rerun the
benchmark with PUMM, FFmalloc, and MarkUs enabled
and calculate overheads.
Results: PUMM should have a lower average runtime
and storage overhead than FFmalloc and MarkUs.

(E4): [1 human-day + 2 compute-hours + 2GB storage]: Syn-
thetically generate use-after-free vulnerabilities using
the monkey scripts provided in PUMM’s code repository
and verify whether PUMM prevents their exploitation.
Preparation: Compile the vulnerable programs de-
scribed in E1.
Execution: For each vulnerable program, run the mon-
key script provided in the Scripts directory of the code
repository, with and without PUMM’s runtime monitor
enabled.
Results: Without PUMM, a subset of the vulnerabilities
generated with the monkey script should yield observ-
able behaviors like segmentation faults. With PUMM,
there should be fewer of these adverse behaviors.

A.5 Notes on Reusability

The scripts directory of the code repository contains scripts for
using and evaluating PUMM. The scripts and their intended
purposes are as follows:
build.sh : Build script to help compile PUMM. See the

README in the code repository for full build steps.
dump-vdso.py : Helper script invoked by trace.sh to copy

the system’s vDSO object. Users should not need to call
this script directly.

hook-debug.sh : Runs a target program with PUMM’s pro-
tection activated. Uses a debug build of PUMM’s run-
time hooks with extra verbosity.

hook-monkey.sh : Runs a target program with PUMM’s pro-
tection activated and additional code to synthetically
inject use-after-free vulnerabilities for evaluation. Users
should use monkey.sh instead of calling this script di-
rectly.

hook.sh : Runs a target program with PUMM’s protection ac-
tivated. Uses the optimized production build of PUMM’s
runtime hooks.

monkey-debug.sh : Runs a target program with PUMM’s
protection activated and synthetically injects a use-after-
free vulnerability for evaluation. Whereas monkey.sh is
the primary script for batch evaluation, this script allows
the user to specify a specific seed to make it easier to
investigate a particular trial. A typical workflow is to



use monkey.sh first and then use monkey-debug.sh to
investigate interesting cases.

monkey.gdb : A helper script used by monkey.sh to automate
GDB. Users should not need to call this script directly.

monkey.sh : Evaluation script for producing the results in
Subsection 4.3 of the conference paper. Specifically,
this script runs the target program several times with
PUMM’s protection activated, but also tries to randomly
inject synthetic use-after-free vulnerabilities. The pur-
pose of doing this is to evaluate PUMM at a larger scale
than what is feasible using only real-world vulnerabili-
ties.

procmap.sh : Helper script for extracting memory layout
information from Perf recordings. Users should not need
to use this script directly.

profile-name.sh : Helper script for determining the profile
name for a given target program. This script is intended
to help users locate a saved PUMM profile. For example,
a user can provide this script with the name of a program
that PUMM has already analyzed, and then they can look
in PUMM’s profile directory for the matching profile file.

ptdump.sh : A helper script to decode a Perf trace into a
human-readable log of the Intel PT packets. Users should
not need to call this script directly and is intended for
debugging.

ptxed.sh : A helper script for decoding a Perf trace into the
sequence of executed instructions. Users should not need
to call this script directly.

trace.sh : The script for recording execution traces using
Perf. See the README in the code repository for usage
instructions and examples.

eval : Contains 3 additional scripts to help with evaluation.
Specifically, these scripts accept a directory containing 1
or more decoded traces and calculate the number of exe-
cuted instructions, total size of the traces, and estimate
code coverage of the target program.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can
be found at https://secartifacts.github.io/usenix%
20sec2023/.

https://secartifacts.github.io/usenix%20sec2023/
https://secartifacts.github.io/usenix%20sec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


