ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Isolated and Exhausted:
Attacking Operating Systems via Site Isolation in the Browser

Matthias Gierlings, Marcus Brinkmann, Jorg Schwenk
Ruhr University Bochum

A Artifact Appendix

A.1 Abstract

Site Isolation, a security feature recently introduced to major
browsers enables attacks on modern operating systems. To
demonstrate the impact of Site Isolation attacks on web users
we implemented a Site Isolation fork-bomb and a DNS Cache
Poisoning Attack: DNS Poisoning by Exhaustive Misappro-
priation of Network Sockets (DEMONS). Setup instructions,
configurations, and the implementation of both attacks are part
of our publicly available research artifacts. While DEMONS
was assigned CVE-2020-6557 and patched by the Chromium
Team,! the fork-bomb is still a threat to current browsers. We
describe a way to mitigate the Site Isolation fork-bomb in
Chromium-based browsers without measurable performance
penalty and include both the patch and our performance mea-
surement results in our artifacts.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

All artifacts provided should be evaluated in a strictly isolated,
physical or virtual lab environment. In case reviewers decide
to evaluate attacks using public internet infrastructure they
must employ measures to prevent any traffic from flowing
between systems that are part of their evaluation setup and
other systems.

A.2.2 How to access

The artifact repository is available at ht tps: //git.noc.rub.

de/gierlmds/isolated-and-exhausted/-/tree/use
nix23_ae_summer. Additionally we provide a mirror-copy”
via Zenodo.

A.2.3 Hardware dependencies

Our experiments can be conducted either in a VM-based lab
environment on a single x86 machine (VM setup) or alter-
natively on a set of physical hosts (hardware setup). In both

! https://chromereleases.googleblog.com/2020/10/stable-channel-update-
for-desktop.html
2 DOI: 10.5281/zenodo.7356538

cases, the setup consists of four distinct hosts (physical or
virtual). For the VM setup an x86 desktop system with at
least 4 cores/8 threads, virtualization support3, at least 20 GiB
RAM and more than 400 GiB of free disk space is required.

DEMONS VM Setup We recommend using Virtual Box 6
for virtualization and Kubuntu Linux 22.04 LTS as host OS.

DEMONS Hardware Setup For our hardware setup we
used three desktop computers’ to run the victim, the benign
DNS server and the router. A ThinkPad T480s° was used to
run the attacker infrastructure (webserver and spoofer).

Fork-Bomb Hardware Setup The fork bomb was evalu-
ated on a Dell Latitude 5280, Intel Core i5 7200U, 8 GiB
RAM, 240 GiB M.2 SATA SSD running Kubuntu Linux
18.04.5 LTS (Kernel 5.4.0-62).

A.2.4 Software dependencies

In addition to our artifacts additional software (binaries/in-
stallers) are required. This section lists the exact software
versions used in testing our artifacts, their use is strongly rec-
ommended. While we did not verify that other versions than
those listed below produce the same results, we believe that
our artifacts will work with any version of Windows 10 and
any release of Chrome with Site Isolation Support prior to ver-
sion 86.0.4240.75, which introduces a fix for CVE-2020-6557.
Using newer versions of Python 3 and the Python Websocket
Client are unlikely to impact the experiments. Using differ-
ent Virtual Box versions or other Hypervisors should also be
possible but potentially affects performance and may require
manual timing adjustments in the code.

¢ Windows 10 (1909 Build 18363.815)

e Ubuntu Linux 20.04.5 LTS Server

¢ Kubuntu Linux 18.04.5 LTS (Kernel 5.4.0-62)
¢ Kubuntu Linux 20.04.5 LTS

¢ Kubuntu Linux 22.04.1 LTS

e Chrome 83.0.4103.106 (Windows)

3 Intel VT-x or AMD-V

4 6.1.38-dfsg-3 ubuntul.22.04.1 amd64

5 Intel Core2Quad Q9400, 4 GiB RAM, Intel 82567LM-3 Gigabit NIC
% Tntel i7-8550U, 40 GiB RAM, Intel Ethernet 1219-V

https://git.noc.rub.de/gierlmds/isolated-and-exhausted/-/tree/usenix23_ae_summer
https://git.noc.rub.de/gierlmds/isolated-and-exhausted/-/tree/usenix23_ae_summer
https://git.noc.rub.de/gierlmds/isolated-and-exhausted/-/tree/usenix23_ae_summer
https://releases.ubuntu.com/20.04.5/ubuntu-20.04.5-live-server-amd64.iso
http://cdimage.ubuntu.com/releases/18.04.4/release/ubuntu-18.04.4-server-amd64.iso
https://cdimage.ubuntu.com/kubuntu/releases/20.04.5/release/kubuntu-20.04.5-desktop-amd64.iso
https://cdimage.ubuntu.com/kubuntu/releases/22.04/release/kubuntu-22.04.1-desktop-amd64.iso
https://www.googleapis.com/download/storage/v1/b/chromium-browser-snapshots/o/Win%2F756065%2Fchrome-win.zip?generation=1585872128174162&alt=media

* Firefox Nightly 86.01a (Windows, Linux)

¢ Chromium 83.0.4103.0 (Linux)

+ Caddyserver 1.0.4" (Linux)

* Python 3.8.2 (Windows)

* Python Websocket Client for Python 3.8.2 (Windows)
* Virtual Box 6* (Linux)

It is recommended to download all binary dependencies
except Caddyserver’ before starting the setup procedure
and transfer them via shared folders in case of a VM setup
or via USB stick in case of a setup with physical hosts.
This way the required software can be installed without
internet connection. This also prevents unsolicited automatic
browser/OS updates.

In addition to our artifacts the following software source
code is required:

o Chromium 101.0.4951.647 (Linux)

A.2.5 Benchmarks

To benchmark the performance impact of our Site Isolation
mitigation we used the performance profiler® integrated into
the Chrome developer tools. The profiler can be accessed via
the Performance-tab.

A.3 Set-up
A.3.1 Installation

The lab environment for the Site Isolation fork-bomb and
DEMONS consists of four hosts, the victim, a router, a benign
DNS server, and the attacker’s server. This section contains
detailed instructions on how to set up those hosts as virtual
machines using Virtual Box. The instructions are also suitable
for installation on native hardware. In this case, Virtual Box-
specific steps should be omitted.

Base System The base image serves as a common base
installation for the router, the benign DNS and the attacker
server. To prepare the base image, perform the following
steps:

1. Install Oracle VirtualBox.’

2. Create a new 64-bit Ubuntu Linux VM with 2 cores and
2 GiB RAM and 15 GiB hard disk.

3. Enable the following acceleration settings: VT-x/AMD-V,
Nested Paging, PAE/NX, KVM Paravirtualization

4. Install the Ubuntu 20.04 LTS server base image. This
guide and the derivative guides assume that during the

7 Will be obtained during setup (cf. subsection A.3)

8 https://developer.chrome.com/docs/devtools/evaluate-per
formance/

9 https://www.virtualbox.org/

installation process user was chosen as username and
si-base was chosen as the hostname.
5. Update the OS and install additional packages:

1 | sudo apt update && sudo apt dist-upgrade && sudo
— apt autoremove --purge

2 | sudo apt install build-essential curl git iptables
<~ -persistent

6. Insert the VirtualBox guest additions ".iso" into the vir-
tual CD-ROM drive of your machine.
7. Install the VirtualBox guest additions.

1 | sudo mount /dev/sr0 /media
cd /media
3 | sudo ./VBoxLinuxAdditions.run

8. Add user to the vboxsf group

1 | sudo usermod -a -G vboxsf user

9. Set an environment variable referring to the arti-
fact repository base folder. It should be located at:
/home/user/isolated-and-exhausted

1 | export ARTIFACTS_REPO="/home/user/isolated-and-
— exhausted/"

2 | sudo bash -c "echo ARTIFACTS_REPO=${ARTIFACTS_REPO
— } >> /etc/environment"

10. Clone the Isolated and Exhausted artifacts repository:

1 | git clone https://git.noc.ruhr-uni-bochum.de/
— glerlmds/isolated-and-exhausted
— SARTIFACTS_REPO

11. Shut down the system.

1 | sudo systemctl poweroff

Attacker Server The attacker server runs the attacker’s web
server and the spoofer. Both the web server and the spoofer
are containerized using Docker. To set up the attacker server
perform the following steps on top of a Base System (cf.
section A.3.1 Base System):

1. Clone the base system to a new virtual or physical host.

2. Name the cloned VM Isolated and Exhausted
Attacker.

3. Boot the system and change the hostname to
si-attacker:

1 | sudo bash -c "echo si-attacker > /etc/hostname"

4. Install docker.

1 | curl -fsSL https://download.docker.com/linux/

— ubuntu/gpg | sudo apt-key add -

2 | sudo add-apt-repository "deb [arch=amd64] https://
< download.docker.com/linux/ubuntu $ (

— 1lsb_release -cs) stable"

3 | sudo apt update

4 | sudo apt install docker-ce docker-ce-cli

< containerd.io docker-compose

https://ftp.mozilla.org/pub/firefox/nightly/2020/12/2020-12-15-09-29-54-mozilla-central/firefox-86.0a1.en-US.win64.installer.exe
https://ftp.mozilla.org/pub/firefox/nightly/2020/12/2020-12-15-09-29-54-mozilla-central/firefox-86.0a1.en-US.linux-x86_64.tar.bz2
https://www.googleapis.com/download/storage/v1/b/chromium-browser-snapshots/o/Linux_x64%2F756066%2Fchrome-linux.zip?generation=1585871012733067&alt=media
https://www.python.org/ftp/python/3.8.2/python-3.8.2-amd64.exe
https://files.pythonhosted.org/packages/a1/9e/8ddb04ef21ea3dfe3924b884dc11fa785df662af23e049ec2d62eaba707d/websocket_client-1.3.2-py3-none-any.whl
https://developer.chrome.com/docs/devtools/evaluate-performance/
https://developer.chrome.com/docs/devtools/evaluate-performance/
https://www.virtualbox.org/

10.

11.

12.

13.

14.

15.

Add user to the docker group.

1 | sudo usermod -a -G docker S$USER

Get the ubuntu base image from Docker Hub.

1

sudo docker pull ubuntu:bionic-20200311

Copy the attacker host configuration'"

1 |sudo rm -f /etc/netplan/*
2 |sudo cp -R SARTIFACTS_REPO/hosts/attacker/rootfs/*
- /

Download a copy of the caddy web server into the repos-
itory. For our evaluation caddy version 1.0.4 was used.
Newer caddy versions should work but may require mod-
ifications to Caddyfiles.

1 |cd SARTIFACTS_REPO/hosts/attacker/webserver/

2 |curl -JLO ’'https://github.com/caddyserver/caddy/
— releases/download/v1.0.4/caddy_v1.0.4

< _linux_amd64.tar.gz’

Replace /etc/resolve.conf with a sym-link:

1 |sudo 1In -sf /var/run/systemd/resolve/resolv.conf /
— etc/resolv.conf

Add the base folder for docker volumes.

1 |sudo mkdir -p /srv/docker/data/demons/attacker/
— spoofer/logs /srv/docker/data/demons/
— attacker/spoofer/results

2 |sudo chown -R root:docker /srv/docker

3 | sudo chmod -R 775 /srv/docker

Enable IPv6 forwarding and redirect all traffic on the
attacker’s subnet 2001:db8::/113 to the web server
running on 2001 :db8:: 1.

1 | sudo sysctl -w net.ipvé6.conf.all.forwarding=1

2 |sudo ipétables -t nat -A PREROUTING -d 2001:db8
< ::/113 -j DNAT --to-destination 2001:db8
— ::1

Spoof the spoofers’ source IP address.

1 | sudo ipé6tables -t nat -A POSTROUTING -s 2001:db8
— ::8001 -p udp -j SNAT --to-source 2001:db8
— ::8000:1

Make iptables rules persistent after reboot.

1

sudo netfilter-persistent save

Shut down the system.

1 | sudo poweroff

Change the VM network settings

* Right-click the Attacker VM in the VirtualBox
Manager

10 Using real hardware the network interface names may differ from the
ones preconfigured in /etc/netplan/00-installer-config.yaml and
must be manually adjusted.

16.
17.

18.

19.

* Select the option Settings from the drop-down
menu.

e Make sure that Adapter 1 and Adapter 2 are en-
abled and that all other adapters are disabled

e Attach Adapter 1 to an Internal Network
named attacker_provider. Set the adapter type
to Paravirtualized Network (virtio-net)

» For Adapter 2 set the network type to NAT

Boot the system.
Create docker containers containing the attacker web
server and spoofer.

1 |cd SARTIFACTS_REPO/hosts/attacker/
docker-compose up -d --build

Shut down the system.

1 | sudo systemctl poweroff

Disable Adapter 2 in the network settings.

Router

1.
2.

10.

11.

Clone the base VM image.

Name the cloned VM Isolated and Exhausted
Router.

Change the VM properties to use 2 CPU cores, 1 GiB
RAM.

Add three Internal Network adapters to the VM and
assign the following network names:

e Adapterl: victim_provider
e Adapter2: attacker_provider
» Adapter3: dns_provider

Boot the system and enable IPv6 forwarding

1 |sudo sysctl -w net.ipvé6.conf.all.forwarding=1

Change the hostname to si-router.

1 | sudo bash -c "echo si-router > /etc/hostname"

Copy the configuration to the router VM '’

1 |sudo rm -f /etc/netplan/*
2 |sudo cp -r $ARTIFACTS_REPO/hosts/router/rootfs/* /

Reboot.

1 | sudo systemctl reboot

Enable and start the traffic shaping service.

1 | sudo systemctl enable traffic-shaping.service
sudo systemctl start traffic-shaping.service

Check the MAC addresses of the interfaces enp0s3
(victim_provider), enp0s8 (attacker_provider)
and enp0s9 (dns_provider) and ensure that they are
assigned to the corresponding VirtualBox adapters.
Shut down the system.

1 | sudo poweroff

DNS Server

—_—

Clone the base VM image.

Name the cloned VM Isolated and Exhausted DNS.
Change the VM properties to use 2 cores, and 1 GiB
RAM.

Boot the system and change the hostname to si-dns:

1

sudo bash -c "echo si-dns > /etc/hostname"

Install bind9.

1 | sudo apt install bind9

Copy the configuration to the router VM'"

1 |sudo rm -f /etc/netplan/*
2 |sudo cp -r $ARTIFACTS_REPO/hosts/dns/rootfs/* /

Disable systemd-resolved.

1

sudo systemctl disable systemd-resolved

Power off the system.

1

sudo systemctl poweroff

Change the VM network settings

* Right-click the DNS VM in the VirtualBox Man-
ager.

* Select the option Settings from the drop-down
menu.

¢ Make sure that Adapter 1 is enabled and that all
other adapters are disabled.

* For Adapter 1 set the network type to Internal
Network named dns_provider.

Victim VM Create a Virtual Box VM with 4 CPU cores
and 8 GiB RAM and a 50 GiB hard disk or use an equiva-
lent physical host. Note: Windows, Chrome and Firefox may
perform fully automatic updates without prompting the user
when an internet connection is available. Performing the vic-
tim installation offline solves this problem. The dependencies
listed in subsubsection A.2.4 can be transferred to the victim
VM via a shared folder, or via USB stick in case dedicated
physical machines are used for the experiment.

1.

Change the VM network settings.

* Right-click the Victim VM in the VirtualBox Man-

ager

Select the option Settings from the drop-down

menu.

* Make sure that Adapter 1 is enabled and that all

other adapters are disabled

Attach Adapter 1 to an Internal Network named

victim_provider.

* Set the adapter type to Intel PRO/1000 MT
Desktop (82540EM).

2. Install Windows 10.
3. Install Chrome 83.0.4103.106 and Firefox Nightly

86.01a. Note: chrome.exe is expected to be located
at C:\ProgramFiles(x86)\Google\Chrome\A
pplication\chrome.exe. If chrome is installed
elsewhere, the content of the variable ATTACK_CMD in
attack_simulator.py, line 14 must be adjusted to
point to chrome. exe.

. Install the CA certificate from the artifact repository in

Chrome:

* Open Chrome and navigate to chrome://settin
gs/privacy.

e In the Privacy and security box click on
More.

e Click Manage Certificates.

* Once the Certificate Import Wizard opened
click Next.

¢ Select the CA certificate from isolated-and-e
xhausted/hosts/attacker/webserver/root
fs/srv/ca/ca.crt.pem and proceed by clicking

Next.
e In the Certificate Store dialog click
Browse... and change the Certificate Store to

Trusted Root Certification Authorities
* Proceed by clicking Next and the finish the import
by clicking Finish.

5. Install the CA certificate from the artifact repository in

FireFox Nightly:

* Open Firefox and navigate to about :preference
s#privacy.

* Scroll down to the option group labeled Security.

e Click on View Certificates

* In the Certificate Manager Dialog select the
Autorities tab and click Import.

* Select the CA certificate from isolated-and-e
xhausted/hosts/attacker/webserver/root
fs/srv/ca/ca.crt.pem and proceed by clicking
Open.

¢ In the Downloading Certificate Dialog check
Trust this CA to identify websites. and
click OK.

. Install Python 3.8.2
. Install the Python Websocket Client (cf. subsubsec-

tion A.2.4)

. Copy websocket_client-1.3.2-py3-none-any.whl

to C:\Users\user\Downloads.

. Open cmd. exe and execute the following commands to

install the Python Websocket Client:

1 |c:

cd \Users\user\Downloads

3 |pip install websocket_client-1.3.2-py3-none-any.
— whl

https://git.noc.rub.de/gierlmds/isolated-and-exhausted/-/blob/usenix23_ae_summer/hosts/victim/attack_simulator.py#L14
chrome://settings/privacy
chrome://settings/privacy
about:preferences#privacy
about:preferences#privacy

10. Open the Windows Network Connections dialog via
Startmenu — Settings — Network & Internet
— Ethernet — Change adapter options.

11. Right-click the network connection (e.g. Ethernet).

12. Select Properties from the drop-down menu.

13. In the Ethernet Properties dialog select Internet
Protocol Version 6 (TCP/IPv6)

14. Click Properties.

15. Adjust the Windows network adapter settings:

* [Pv6 Address: 2001:db8::4000:1

* Subnet prefix length: 98

e Default gateway: 2001:db8::7fff: ffff
e DNS server: 2001:db8::8000:1

16. Confirm the changes by clicking OK.
17. Copy the artifact repository folder isolated-and-
exhausted to C:\Users\user\Documents.

Chrome Build Environment This paragraph describes how
to set up a build environment for Chromium and is mostly
based on the official Chromium Build Instructions.''

1. Install Kubuntu 20.04 LTS on a host with at least 16 GiB
of RAM and at least 300 GiB of free hard disk space.

2. Insert the VirtualBox guest additions ".iso" into the vir-
tual CD-ROM drive of your machine.

3. Install the VirtualBox guest additions.

1 | sudo mount /dev/sr0 /media
2 | cd /media
3 |sudo ./VBoxLinuxAdditions.run

4. Add user to the vboxsf group

1

sudo usermod -a -G vboxsf user ‘

5. Install additional required packages.

1

sudo apt install git build-essential ‘

6. Reboot the system.

1

sudo reboot ‘

7. Clone the Chromium depot tools and add their path to
the PATH environment variable:

1 | git clone https://chromium.googlesource.com/

— chromium/tools/depot_tools.git

2 |export PATH="$PATH:/home/user/depot_tools"

3 |echo export PATH=\"\$PATH:/home/user/depot_tools\"
— >> ~/.bash_profile

8. Get the Chromium source code (this may take a while).

mkdir ~/chromium && cd ~/chromium
fetch --nohooks chromium

cd src
./build/install-build-deps.sh

git fetch --tags

git checkout tags/101.0.4951.64

AN AW N =

W https://chromium.googlesource.com/chromium/src/+/main/do
cs/linux/build_instructions.md

Networks
Attacker Provider: 2001:db8::/98
-> Attacker VM:
Web: 2001:db8::/113 Benign DNS
(2001:db8::8000: 1)

(ONS)
=

Other: 2001:db8::8000/113
Victim Provider: 2001:db8::4000:/98
DNS Provider: 2001:db8::8000:/98
Bank: 2001:db8::c000:/98

Victim
(2001:db8::4000:1)

‘E’\ couter
2001:db8: : 7Fff: FTff /,
S A
2001:db8::3 : ¥ R)

N\ 2001:db8: :bfff:ffff |
@ Webserver (2001:db8::0/113)

I:I@ Spoofer (2001:db8::8001)

Attacker VM
(2001:db8: :3fff:fffe)

Figure 1: Network configuration of the Isolated and Exhausted
evaluation lab.

9. Prepare the build. The command gn args ... automat-
ically opens a file in the default text editor. Replace
the contents of this file with the contents of the file
~/isolated-and-exhausted/site_isolation_
patch/gn.args from the artifacts repository.

1 |gclient sync -D --with_branch_heads
2 |gclient runhooks
3 | gn args out/release

10. Finalize build preparations.

1 ’gn gen out/release

11. Build an unmodified Chrome (this may take a while).

1 |nice -n 19 autoninja -C out/release

|

12. Build a version of Chrome patched with our proof-of-
concept mitigation against the Site Isolation fork-bomb
(this may take a while). Pass the contents of ~/isolated
-and-exhausted/site_isolation_patch/gn.args
as arguments when invoking gn args.

1 |git apply ~/isolated-and-exhausted/

— site_isolation_patch/si_patch.diff
2 |gn args out/patched

3 | gn gen out/patched

4 |nice -n 19 autoninja -C out/patched

A.3.2 Basic Test

Testing Connectivity After successfully performing the
setup (cf. subsection A.3) the lab network should be config-
ured as shown in Figure 1. To verify the setup make sure that
all hosts can communicate with each other by issuing ping
commands. Note that Windows 10 will not respond to incom-
ing ICMP echo requests but should be able to receive ICMP

https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md
https://chromium.googlesource.com/chromium/src/+/main/docs/linux/build_instructions.md

echo responses from all other hosts in reaction to requests sent
from the victim system. If mutual communication between
all hosts works, ensure that DNS resolution works on the vic-
tim system. Open the windows command prompt (cmd. exe)
and issue the command nslookup evil.com. You should
receive a response resolving the domain to the IP address
2001:db8::1.

Testing the Attacker Website To test the attacker web
server, open a browser on the victim host and navigate to
http://evil.com. You should see the website shown in Fig-
ure 2. If you properly installed the root CA certificate from
the Isolated and Exhausted repository you should also be able
to access the same website via HTTPS on port 443 without
receiving a self-signed certificate warning message.

@ Site lsolation DOS Eval with Jave: X 4 - = 2
C (@ Notsecure | evil.com h+d e
Global Settings
D lsolate Sites ‘

WebSockets
| WebSockets || WebSockets (TLS) | ‘

WebRTC
WebRTC Transport Protocol [UDP v |

| RTCPeerConnections (idle) |

| RTCPeerConnections (single data channel) |

| RTCPeerConnections (multiple data channels) | - munged ‘@‘un.mm)ged

| #frames (Fork-Bomb) |

Iframes ‘

Figure 2: A website to test Site Isolation exploits. The website
can be used to allocate UDP ports using WebRTC and to
execute a Site Isolation fork-bomb.

Testing the Automated DEMONS Experiment Open an
instance of the Tausk Manager, select the performance tab and
focus the CPU graph. Next, open the windows command
line (cmd.exe) and change your working directory to the
victim host folder inside the Isolated and Exhausted artifact
repository and execute the attack_simulator.py script.

1 |c:

2 |cd \Users\user\Documents\isolated-and-exhausted\hosts\
— victim

3 |python attack_simulator.py

Once the attack_simulator.py script is running, an in-
stance of the configured browser (or the malware attacker)
should be started. In the Task Manager, you should be able to
observe the CPU load spiking for a couple of seconds at the
same time, the number of open handles will rise to a value
around 130000 but little to no network traffic is observable
during the DEMONS setup phase. Once the setup phase com-
pletes, CPU load will drop significantly. At the same time
spoofed DNS responses sent by the poisoner consume a mod-
erate amount of downstream bandwidth.

Processes Performance | App history Start-up Users Details Services

cPu
, [8% 340GHz CPU AMD Ryzen 9 5950X 16-Core Processor
. = Utilisation .
Memory
3,7/8,0GB (46%) g < <t
:) i (P}
Disk 0 (C) : PN
0%]

8% 3,40 GHz

140

0:07:44:24

Figure 3: During the DEMONS Setup Phase (S) the CPU load
and number of handles increase significantly, the Poisoning
Phase (P) causes moderate CPU and network load.

Testing the Custom Chromium Build. Boot the
Chromium Build Environment, open a console and change
your working directory to the subfolder src inside the
chromium repository. Then run both the unpatched and the
patched version of Chromium. In both cases, you should be
presented with a Chromium browser window. Make sure that
you can access the Chromium developer tools.

1 | cd ~/chromium/src
2 |out/release/chrome
3 | out/patched/chrome

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): The Site Isolation fork-bomb can be used to implement
DoS attacks against the operating system or the web
browser.

(C2): Currently none of the tested browsers mitigates the
Site Isolation fork-bomb. We propose an effective miti-
gation and implemented a proof-of-concept patch based
on Chromium 101.0.4951.64. Our patch is efficient and
does not measurably affect the browser’s performance.

(C3): The impact of Site Isolation attacks goes beyond
DoS. DNS-Poisoning by Exhaustive Misappropriation
of Network Sockets (DEMONS), a DNS Cache Poison-
ing attack uses Site Isolation to poison the DNS cache
of the Windows operating system, in the web attacker
model.

A.4.2 Experiments
(E1): [Site Isolation Fork-Bomb (ad C1)] [1 human-hour]

http://evil.com

START; END; RESULT; BURSTS; DURATION; CACHE_CONTENT

2022-09-19 11:52:20.508692;2022-09-19 12:02:23.901948; SUCCESS;5779;603;2001:db8::1[2001:db8::1
2022-09-19 12:02:33.976641;2022-09-19 12:36:50.096716; SUCCESS;20146;2056;2001:db8::112001:db8::1
2022-09-19 12:37:00.154377;2022-09-19 12:40:34.654990; SUCCESS;1998;214;2001:db8::1[2001:db8::1
2022-09-19 12:40:44.747582;2022-09-19 13:25:14.253180;ABORT; 25000;2669;None

NN AW N =

Listing 1: Example excerpt of the DEMONS result log on the attacker server. Each line represents an iteration of the DEMONS
experiment against the victim host and contains the following values in order from left to right: start date of the experiment end
date of the experiment, outcome, duration of the experiment in seconds, the IP address found in the victim’s cache for the target
domain.

Preparation:

1. Boot the router, the benign DNS, the attacker server
and the victim host.

2. Log into the victim system.

3. Start the Windows TaskManager and monitor the
browser processes on the "Processes"” tab.

Execution: Open Chrome 83.0.4103.106 and perform
the following steps:

1. Visit the attacker web site in the lab http://evil
.com: 80 (see Figure 2).

2. Note the number of browser processes running

3. Make sure the checkbox Isolate Sites is
unchecked.

4. Click the button labeled iframes (Fork-Bomb)

5. Note that the number of browser processes has not
changed significantly.

6. Make sure the checkbox Isolate Sites is
checked.

7. Click the button labeled i frames (Fork-Bomb)

8. Observe the number of browser processes increase
significantly until it stalls after some time.

9. If necessary kill the browser process or reset the
victim system.

Results: Once the victim system is no longer able to
create new browser processes the browser may crash
and/or the victim OS becomes unusable. For a detailed
description of effects we observed during our evaluation
please refer to Table 5 in Appendix C of our work.

The number of processes created depends on the hard-
ware, host OS, browser, browser version, and swap con-
figuration. Even using identical hard- and software, the
number of processes varies between runs. Table 2 of in
our work lists the median of five measurements.

(E2): [Site Isolation Fork-Bomb mitigation (ad C2)] [I

human-hour]

Preparation: Start the Chrome Build Environment (cf. sec-

tion A.3.1 Chrome Build Environment)

Execution: To verify that the changes introduced by our

patch do not measurably impact the browser’s per-
formance, record the page load times of the Tranco-
Top 5 websites using the profiling tools integrated into

. Page load time in ms
Website Chromium 101.0.4951.64
unpatched patched
google.com 752.1 ms 766.4 ms
youtube.com 5366.4 ms 5265.5 ms
facebook.com 643.3 ms 629.5 ms
netflix.com 1107.3 ms 1039.6 ms
microsoft.com 1305 ms 1243.3 ms

Table 1: The average page load time (in ms) of the Tranco-
Top-5 websites shows no significant difference between an
unpatched Chromium 101.0.4951.64 and the same browser
version patched with our mitigation against the Site Isolation
fork-bomb.

Chromium'? (see Table 1).

Create at least one series of measurements for each
Chromium and Chromium-Site Isolation-patched'’ by
performing the following steps:

e Start the browser.

* Open the performance tab of the integrated devel-
oper tools.

* Open the website.

* Run the profiler and discard the initial result to
avoid any caching effects.

* Run the profiler and calculate t;,40q = tiotal — tidies
where ;.4 1 the total time recorded by the profile
and t;4, is the time the browser was idle during
loading.

» Repeat the previous step four more times.

Results: Table |1 shows the average loading times for the
Tranco-Top-5 websites using Chromium and Chromium
Site Isolation-patched. There is no significant difference
in performance between both browser versions (see is
olated-and-exhausted/site_isolation_patch/
si_patch_performance_t_test.ods). Since we only
need two additional global constants, and one additional

]zhttps://developer.chrome.com/docs/devtools/evaluate—per
formance/?utm_source=devtools

13 To determine the page load time we recorded two series of measurements
on two different days, to reduce the impact of server and network load.

http://evil.com:80
http://evil.com:80
https://developer.chrome.com/docs/devtools/evaluate-performance/?utm_source=devtools
https://developer.chrome.com/docs/devtools/evaluate-performance/?utm_source=devtools

local limit per tab/window, the effect of our patch on
browser memory consumption is negligible.

(E3): [DNS Poisoning by Exhaustive Misappropriation of
Network Sockets (DEMONS) (ad C3)] [5 human min-
utes + 12 compute hours]

A victim visits the attacker web site and becomes sub-
ject to the DEMONS (attack), if successful poisons the
victim’s DNS cache. A script automatically repeats the
experiment until it is stopped manually.

Preparation:

1. Boot the router, benign DNS, attacker server and
the victim host.

2. Log into a shell on the attacker server.

3. Start live monitoring of DEMONS experiment re-
sults (cf. Listing).

1 |cd /srv/docker/data/demons/attacker/spoofer/
< results/
2 |tail -f $(1ls -1r | head -nl)

Execution:

1. Open cmd. exe on the victim system.

2. Change your working directory to the victim host
sub folder in the artifacts repository and run the
experiment:

1 |c:

2 |cd \Users\user\Documents\isolated-and-
— exhausted\hosts\victim

3 |python attack_simulator.py

Results: DEMONS is probabilistic because the attacker
must correctly guess a random 16-bit transaction ID.
Given a large enough sample set, the attacker can poison
the victim’s DNS cache with a success probability of
36% or better. Each DEMONS experiment may have one
of three results SUCCESS in case the attacker successfully
poisoned the victim’s DNS cache, FAILURE - a DNS
response from the benign DNS server was cached by the
victim or ABORT if neither the attacker nor the benign
DNS served a valid record within a preset burst limit.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenix%20sec?2
023/.

https://secartifacts.github.io/usenix%20sec2023/
https://secartifacts.github.io/usenix%20sec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

