
USENIX’23 Artifact Appendix: Linear Private Set Union from
Multi-Query Reverse Private Membership Test

Cong Zhang1,2, Yu Chen3,4,5 (B), Weiran Liu6, Min Zhang3,4,5 and Dongdai Lin1,2

1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

{zhangcong,ddlin}@iie.ac.cn
3School of Cyber Science and Technology, Shandong University, Qingdao 266237, China

4State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
5Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Qingdao 266237, China

yuchen.prc@gmail.com, zm_min@mail.sdu.edu.cn
6Alibaba Group

weiran.lwr@alibaba-inc.com

A Artifact Appendix

A.1 Abstract
We introduce our open-source project mpc4j, an efficient and
easy-to-use Secure Multi-Party Computation (MPC) library
mainly written in Java. Package psu in mpc4j-s2pc-pso of
mpc4j contains the implementations, along with configura-
tions needed to replicate our experiments from Section 6. In
particular, our artifact supports running and comparing Pri-
vate Set Union (PSU) protocols with element set sizes up
to 220 on machines having 128GB memory. We also pro-
vide guidelines for installing dependencies and compiling
native libraries needed by mpc4j on different platforms, in-
cluding x86_64 MacBook, MacBook with M1 chip, Ubuntu
20.04, and CentOS 8. The project is licensed under Apache
License 2.0. The source code is available online at https://
github.com/alibaba-edu/mpc4j. The stable version for
the artifact evaluation is available at https://github.com/
alibaba-edu/mpc4j/releases/tag/v1.0.4.

In this artifact appendix, we first introduce the minimal
hardware and software requirements to get performance re-
ports shown in our paper using mpc4j. Then, we introduce how
to install and run mpc4j on different platforms. We note that
there are some performance gaps between different platforms,
and having complete comparisons for different protocols is
very challenging. Aside from that, mpc4j still tries to provide
a library for having relatively unified comparisons. We wel-
come suggestions and performance reports on other platforms
with future reproducibility.

A.2 Description & Requirements
We introduce our open-source project mpc4j (Multi-Party
Computation for Java), an efficient and easy-to-use Secure

Multi-Party Computation (MPC) library mainly written in
Java. mpc4j aims to provide an academic library for re-
searchers to study and develop MPC and related protocols in
a unified manner. As mpc4j tries to provide state-of-the-art
MPC implementations, researchers could leverage the library
to have quick and unified comparisons between the proposed
and existing protocols.

Package psu in mpc4j-s2pc-pso of mpc4j contains the im-
plementations, along with configurations needed to replicate
our experiments from Section 6. Existing Private Set Union
(PSU) implementations are under different MPC frameworks
and different experimental settings. After carefully studying
existing open-source codes, we fully re-implement exisiting
PSU protocols and their underlying basic protocols using Java.
Evaluators can test PSU protocols on mpc4j by simply using
different configuration files. All experiment results shown in
Section 6 of our paper are obtained by running mpc4j.

Evaluators can compile and run mpc4j on different 64-bit
platforms. We provide guidelines for installing dependencies
and compiling native libraries needed by mpc4j on different
platforms, including x86_64 MacBook, MacBook with M1
chip, Ubuntu 20.04, and CentOS 8. Note that successfully
running all PSU experiments with large element size (i.e.,
n = 220) requires 128GB RAM. We run our experiments on a
single Intel Core i9-9900K with 3.6GHz and 128GB RAM.
We note that there are some performance gaps between dif-
ferent platforms. We welcome suggestions and performance
reports on other platforms with future reproducibility.

In the full version of our paper, we further provide exper-
iment results on two PSU applications, namely IP blacklist
aggregation and Private ID. The related source code has been
merged into version v1.0.51.

1https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.
5

https://github.com/alibaba-edu/mpc4j
https://github.com/alibaba-edu/mpc4j
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.4
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.4
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.5
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.5


A.2.1 How to access

mpc4j is available online on GitHub at https://github.
com/alibaba-edu/mpc4j. Evaluators can visit the sta-
ble version v1.0.4 (https://github.com/alibaba-edu/
mpc4j/releases/tag/v1.0.4) to reproduce the experi-
ment results shown in the paper.

A.2.2 Hardware dependencies

mpc4j currently support 64-bit macOS, Ubuntu, and CentOS
systems. Evaluators may meet errors when compiling mpc4j
on a 32-bit or less system. The reason is that mpc4j uses some
64-bit Single instruction, multiple data (SIMD) operations.

A.2.3 Software dependencies

mpc4j leverages native C/C++ codes to speed up crypto-
graphic operations. The native codes and Java codes are inter-
acted by the Java Native Interface (JNI) technique.

We separate native C/C++ codes into two modules, namely
mpc4j-native-tool and mpc4j-native-fhe. mpc4j-native-tool con-
tains native codes for basic cryptographic operations, while
mpc4j-native-fhe contains native codes for Fully Homomor-
phic Encryption (FHE) using SEAL2. All basic cryptographic
operations in mpc4j-native-tool have alternative pure-Java im-
plementations in mpc4j with the same functionalities and the
same data representations. Note that if evaluators only run
mpc4j for PSU, there is no need to install SEAL and compile
mpc4j-native-fhe. mpc4j-native-tool relies on the following
C/C++ libraries:

• GMP (https://gmplib.org/): An efficient library for
operations with arbitrary precision integers, rationals,
and floating-point numbers.

• NTL (https://libntl.org/): A high-performance,
portable C++ library providing data structures and algo-
rithms for manipulating signed, arbitrary length integers
and for vectors, matrices, and polynomials over the in-
tegers and over finite fields, developed by Victor Shoup
(https://shoup.net/). Note that one can further intro-
duce GF2X (https://gitlab.inria.fr/gf2x/gf2x)
for more efficient operations in a Galois Field. However,
since the installation procedure for GF2X is rather com-
plicated, we use NTL by default.

• MCL (https://github.com/herumi/mcl): A
portable and fast pairing-based cryptography library.
MCL also includes fast Elliptic Curve implementations,
especially the optimized implementation for the elliptic
curve secp256k1.

• libsodium (https://doc.libsodium.org): A modern,
easy-to-use software library for encryption, decryption,

2https://github.com/microsoft/SEAL

signatures, password hashing, and more. libsodium in-
cludes efficient implementations for the elliptic curve
Curve25519 with APIs for X25519 and Ed25519.

• OpenSSL (https://www.openssl.org/): a robust,
commercial-grade, full-featured toolkit for general-
purpose cryptography and secure communication.
OpenSSL includes many efficient cryptographic primi-
tive implementations.

A.3 Set-up
A.3.1 Installation

Installing mpc4j-native-tool might be a bit complicated for
ones who are not that familiar with Unix-like systems, since
the procedures differ across platforms. The documentation
(README.md) in package mpc4j-native-tool provides instruc-
tions for installing mpc4j-native-tool on macOS (x86_64 /
aarch64), Ubuntu, and CentOS, respectively.

A.3.2 Basic Test

We develop mpc4j using Intellij IDEA (https:
//www.jetbrains.com/idea/) and CLion (https:
//www.jetbrains.com/clion/). After successfully com-
piling mpc4j-native-tool (Please see readme.md in these
modules for more details on how to compile them), evaluators
only need the community version of Intellij IDEA to run all
basic tests.

Evaluators need to configure IDEA with the following pro-
cedures so that IDEA can link to the complied mpc4j-native-
tool native libraries.

1. Open “Run->Edit Configurations...”

2. Open “Edit Configuration templates...”

3. Select “JUnit”.

4. Add the following command into “VM Options”: -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH.

After that, evaluators can run tests of any submodule
by pressing the green arrows showing on the left of the
source code in test packages. See Section Demonstration of
readme.md in mpc4j on details for running the tests.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): In our paper, we claimed that we fully re-implement
state-of-the-art PSU protocols and their underlying basic
protocols using Java. This can be verified by running
basic tests in psu (See Section A.3.2 for details), or run-
ning experiments with different configuration files (See
Section A.4.2 for details).

https://github.com/alibaba-edu/mpc4j
https://github.com/alibaba-edu/mpc4j
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.4
https://github.com/alibaba-edu/mpc4j/releases/tag/v1.0.4
https://gmplib.org/
https://libntl.org/
https://shoup.net/
https://gitlab.inria.fr/gf2x/gf2x
https://github.com/herumi/mcl
https://doc.libsodium.org
https://github.com/microsoft/SEAL
https://www.openssl.org/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/clion/
https://www.jetbrains.com/clion/


(C2): In our paper, we claimed that although there is some
performance gap, most basic operations in Java and
C/C++ have similar performances. This can be verified
by running all efficient tests in mpc4j-common-tool (test
classes with names end with “EfficiencyTest”). For ex-
ample, try running “PrpEfficiencyTest” in the package
edu.alibaba.mpc4j.common.tool.crypto.prp of the sub-
module mpc4j-common-tool, evaluators can see the per-
formance comparisons between using AES provided by
Java and by AES-NI invoked with JNI.

A.4.2 Experiments

(E1): [Generate jar file] [5 human-minutes + 5 compute-
minutes]: Generate mpc4j-s2pc-pso-1.0.4-jar-with-
dependencies.jar containing the main function entry.
How to: On the charms bar of IDEA, evaluators can
find a button with name “Maven”. Press that botton,
double-click “mpc4j -> Lifecycle -> package”, IDEA
would automatically compile and generate mpc4j-s2pc-
pso-1.0.4-jar-with-dependencies.jar containing the main
function entry.
Preparation: Evaluators need to successfully running
basic tests before generating the jar file.
Execution: Just double-click “mpc4j -> Lifecycle ->
package”.
Results: The generated file would be located in
“mpc4j/mpc4j-s2pc-pso/target”.

(E2): [(optimal) Config network settings] [5 human-minutes
+ 1 compute-minute]: Config network settings using tc.
How to: Open a terminal, and execute the following
command: “tc qdisc add dev lo root netem rate 10Mbit
latency 80ms”. Then, the local network is configured as
10Mbit bandwidth with 80ms latency. Evaluators can
try other network settings with other parameters, e.g.,
100Mbit/80ms, 1Gbit/40ms, 10Gbit/0.02ms.
Preparation: None
Results: Execute “sudo tc qdisc show dev lo” to see if
the network is configured correctly.

(E3): [Run experiments] [10 human-minutes + 5 compute-
hour]: Run experiments using different configuration
files.
How to: Open two terminals, one for the PSU
server and one for the PSU client. Switch to the
dictionary where mpc4j-s2pc-pso-1.0.4-jar-with-
dependencies.jar located (Evaluators can also
copy the generated jar file to other dictionar-
ies). For the server’s terminal, execute “java -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH
-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
-jar mpc4j-s2pc-pso-1.0.4-jar-with-dependencies.jar
CONFIG_SERVER_FILE.txt”. For
the client’s terminal, execute “java -
Djava.library.path=/YOUR_ABS_NATIVE_LIB_PATH

-Djava.util.concurrent.ForkJoinPool.common.parallelism=8
-jar mpc4j-s2pc-pso-1.0.4-jar-with-dependencies.jar
CONFIG_CLIENT_FILE.txt”. The corresponding
server/client configuration files are in “mpc4j-s2pc-
pso/conf/psu”. Note that evaluators must first run server
and then run client.
Preparation: None.
Note: It would take a long time to run if the network
has limited bandwidth, long latency, and/or a large set
size. See the performance results of our paper to esti-
mate the total running time. Evaluators may find that the
setup of SKE-PSU time is quite different from the result
presented in Table 3 of our paper. This is because in
the paper, we assume Boolean multiplication triples are
pre-computed offline and stored locally in a temporary
file. Therefore, the setup phase only contains loading
Boolean multiplication triples into the memory. In our
artifact, we dynamically generate Boolean multiplication
triples in the setup phase using silent Oblivious Transfer
techniques. In the full version of the paper, we provide
the triple generation costs for SKE-PSU, which would be
similar to the costs in the setup phase evaluators obtained
using the artifact.
Results: Java would run the experiments and generate
the performance reports under the current dictionary.

A.5 Notes on Reusability
Evaluators can check and modify server/client configuration
files to change IP addresses, port numbers, the element byte
length used for PSU. We also provide other configuration
examples (marked with #) for specific PSU protocols.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


