ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix:
One Server for the Price of Two:
Simple and Fast Single-Server Private Information Retrieval

Alexandra Henzinger Matthew M. Hong
MIT MIT

Henry Corrigan-Gibbs Sarah Meiklejohn
MIT Google

Vinod Vaikuntanathan

A Artifact Appendix

A.1 Abstract

Our source code for our two new, high-throughput PIR
schemes, SimplePIR and DoublePIR, is available under
the MIT open-source license at https://github.com/
ahenzinger/simplepir. SimplePIR and DoublePIR, in-
cluding their extensions to support databases with long
records and batch queries (cf. Sections 4.3 and 5.2), are im-
plemented in roughly 1,400 lines of Go code, along with 200
lines of C (for the performance-critical matrix-multiplication
routines). For each PIR scheme, the code implements the
Setup, Query, Answer, and Recover routines. Our repository
additionally contains a suite of correctness tests and perfor-
mance benchmarks. To obtain our performance numbers, we
run our benchmarks on an AWS EC2 c5n.metal instance.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The source code for SimplePIR and DoublePIR is available
at https://github.com/ahenzinger/simplepir/tree/
438b4590aceedf76c7588b03125dfc0db39e3611.

A.2.3 Hardware dependencies

We run our evaluation on an AWS EC2 c5n.metal instance
running Ubuntu 22.04. However, it is possible to run the
SimplePIR and DoublePIR code on any machine with an
installation of Go and of a C compiler (see Section A.2.4),
though this might require amending the command-line flags
passed to the C compiler.

A.2.4 Software dependencies

Running SimplePIR and DoublePIR requires installations of
Go and GCC. We additionally require Python, NumPy, and
Matplotlib to generate our evaluation plots.

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Instructions for installing the required dependencies are
given in the Setup section of https://github.com/
ahenzinger/simplepir/blob/main/README.md. Users
should install Go (tested with version 1.19.1) and GCC (tested
with version 11.2.0) to run SimplePIR and DoublePIR. Users
should additionally install Python (tested with Python3),
NumPy, and Matplotlib to generate our evaluation plots.

A.3.2 Basic Test

To run all SimplePIR and DoublePIR correctness tests, users
should run the command

go test

in the simplepir/pir directory. The suite of correctness
tests runs SimplePIR and DoublePIR on random databases of
fixed dimensions and checks that the PIR outputs are correct.
The test suite should take roughly 2.5 minutes to run.

This command should produce logging output, followed
by this message to indicate that all tests have passed:

PASS
ok github.com/ahenzinger/simplepir/pir


https://github.com/ahenzinger/simplepir
https://github.com/ahenzinger/simplepir
https://github.com/ahenzinger/simplepir/tree/438b4590aceedf76c7588b03125dfc0db39e361f
https://github.com/ahenzinger/simplepir/tree/438b4590aceedf76c7588b03125dfc0db39e361f
https://github.com/ahenzinger/simplepir/blob/main/README.md
https://github.com/ahenzinger/simplepir/blob/main/README.md

A.4 Evaluation workflow
A.4.1 Major Claims

Our paper makes the following claims:
(C1): SimplePIR performance. On a database 1 GB in size
containing 233 1-bit entries, SimplePIR has:

1. a throughput of roughly 10 GB/s/core when run-
ning on an AWS EC2 c5n.metal instance,

2. 121 MB of offline download, and
3. 242 KB of online communication.

This is shown by experiment (E1), whose results are
displayed in Table 8 in the body of our paper.

(C2): DoublePIR performance. On a database 1 GB in size
containing 233 1-bit entries, DoublePIR has:

1. a throughput of roughly 7.4 GB/s/core when run-
ning on an AWS EC2 c5n.metal instance,

2. 16 MB of offline download, and
3. 345 KB of online communication.

This is shown by experiment (E2), whose results are
displayed in Table 8 in the body of our paper.

(C3): Throughput with batching. SimplePIR and Dou-
blePIR’s throughput increases when the client makes
batches of many queries at once. This is shown by ex-
periment (E3), whose results are displayed in Figure 9
in the body of our paper.

(C4): Application evaluation. On a database 8 GB in size
containing 23¢ 1-bit entries, DoublePIR has:

1. athroughput of roughly 7 GB/s/core when running
on an AWS EC2 c5n.metal instance,

2. 16 MB of offline download, and
3. 756 KB of online communication.

This is shown by experiment (E4), whose results are
reported in Section 8.2 in the body of our paper.

A.4.2 Experiments

(E1): SimplePIR performance [5 compute-minutes]: This
experiment benchmarks (1) the communication and (2)
the throughput of SimplePIR, when running on a 1 GB
database consisting of 233 1-bit entries.

How to: Run the command

LOG_N=33 D=1 go test -bench SimplePirSingle
- -—timeout 0 -run="$%

from the simplepir/pir directory. The command will
run SimplePIR 5 times on a database consisting of 23
1-bit entries, and print logging information including the
communication and the per-core throughput of each run.
Results: For each run of SimplePIR, this experiment
prints logging information that look as follows:

e Offline download: 123572 KB, indicating that
SimplePIR’s offline download consists of roughly
121 MB.

* Online upload: 120.000000 KB, indicating
that SimplePIR’s offline upload consists of 120 KB.

* Rate: 10177.282855 MB/s, indicating that Sim-
plePIR’s throughput was 10,177 MB/s/core.

* Online download: 120.000000 KB, indicating
that SimplePIR’s offline download consists of 120
KB.

(E2): DoublePIR performance [5 compute-minutes]: This
experiment benchmarks (1) the communication and (2)
the throughput of DoublePIR, when running on a 1 GB
database consisting of 233 1-bit entries.

How to: Run the command

LOG_N=33 D=1 go test -bench DoublePirSingle
< -—timeout 0 -run="$

from the simplepir/pir directory. The command will

run DoublePIR 5 times on a database consisting of 233

1-bit entries, and print logging information including the

communication and the per-core throughput of each run.

The logging results are interpreted the same way as in

(ED).

(E3): Throughput with batching [1.5h compute-hours]:
This experiment benchmarks SimplePIR’s and Dou-
blePIR’s effective, per-core throughput, when run on
batches of queries of increasing size, on a 1 GB database
consisting of 233 1-bit entries.

How to: Run the command

go test -bench PirBatchLarge -timeout 0

< —run="$
from the simplepir/pir directory. The command will
run both SimplePIR and DoublePIR 5 times on a
database consisting of 233 1-bit entries, with batch sizes
ranging from 1 to 1024, and print logging information
including the communication and the per-core through-
put of each run. The logging results are interpreted the
same way as in (E1).
Results: This command produces the output files
simple-batch.log and double-batch.log in the
simplepir/pir directory. From the simplepir/eval
directory, run the command
python3 plot.py -p batch_tput -f

—~ ../pir/simple-batch.log

< ../pir/double-batch.log -n SimplePIR

- DoublePIR
This command plots SimplePIR and Dou-
blePIR’s effective, per-core throughput for vari-
ous batch sizes, and writes this plot to the file
throughput_with_batching.pdf. This command
was used to generate Figure 9.

(E4): Application evaluation [40 compute-minutes]: This

experiment benchmarks (1) the communication and (2)



the per-core throughput of DoublePIR, when running on
an 8 GB database consisting of 23¢ 1-bit entries.
How to: Run the command

LOG_N=36 D=1 go test -bench DoublePirSingle
< -timeout 0 -run="$

from the simplepir/pir directory. The command will

run DoublePIR 5 times on a database consisting of 23

1-bit entries, and print logging information including the

communication and the per-core throughput of each run.

The logging results are interpreted the same way as in
(ED).

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.


https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


