
USENIX’23 Artifact Appendix: Decompiling x86 Deep Neural Network
Executables

Zhibo Liu, Yuanyuan Yuan, Shuai Wang*

The Hong Kong University of Science and Technology
{zliudc,yyuanaq,shuaiw}@cse.ust.hk

Xiaofei Xie
Singapore Management University

xfxie@smu.edu.sg

Lei Ma
University of Alberta

ma.lei@acm.org

A Artifact Appendix

A.1 Abstract
We provide source code of BTD and data used in
our experiments. Our artifact is publicly available at
https://github.com/monkbai/DNN-decompiler/tree/
b4f64783846b85cac4b0eb6c7a5595535cc858d3 with
detailed documents. In the evaluation, user is able to use BTD
to decompile 63 provided DNN executables into their original
DNN model specifications, including 1 DNN operators and
their topological connectivity, 2 dimensions of each DNN
operator, and 3 parameters of each DNN operator, such as
weights and biases, in json format.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Our artifact does not rise any ethical concerns. The experi-
ments will not cause any risk for evaluators’ machines security
or data privacy.

A.2.2 How to access

The artifact is publicly available at https:
//github.com/monkbai/DNN-decompiler/tree/
b4f64783846b85cac4b0eb6c7a5595535cc858d3.

A.2.3 Hardware dependencies

We ran our evaluation experiments on a server equipped
with Intel Xeon CPU E5-2683, 256GB RAM, and an Nvidia
GeForce RTX 2080 GPU. Logging and filtering all traces
for all DNN executables in the evaluation takes more than a
week and consumes nearly 1TB disk storage. To ease the AE
committee to review, we omit the trace logging process and
provide the filtered traces in the docker image and evaluation

*Corresponding author.

data. The trace logger and filter are provided in MyPinTool
and the trace_filter.py script. Without logging and filtering,
the whole evaluation takes roughly 24 hours and requires less
than 120GB of disk space. Besides, the symbolic execution
may consume a lot of memory resources, so please make sure
that the machine on which the experiment is run has sufficient
memory.

A.2.4 Software dependencies

BTD relies on IDA Pro (version 7.5) for disassembly, and
because IDA is commercial software, we do not provide it in
this repo; instead, in order to reduce the workload of AE re-
viewers, we provide the disassembly results directly as input
for BTD. The scripts used to disassemble DNN executable
into assembly functions with IDA are presented in our ar-
tifact. IDA Pro is not indispensable; any other full-fledged
disassembly tool can be used to replace IDA.

A.2.5 Benchmarks

Table 1: Compilers evaluated in our study.
Tool Name Publication Developer Version (git commit)

TVM OSDI ’18 Amazon
v0.7.0
v0.8.0

v0.9.dev

Glow arXiv Facebook
2020 (07a82bd9fe97dfd)
2021 (97835cec670bd2f)
2022 (793fec7fb0269db)

NNFusion OSDI ’20 Microsoft v0.2
v0.3

Our evaluation covers above 7 models compiled with 9 dif-
ferent compiler options, including Glow-2020, Glow-2021,
Glow-2022, TVM-v0.7 (O0 and O3), TVM-v0.8 (O0 and O3),
TVM-v0.9.dev (O0 and O3), in total 63 DNN excutables.
NNFusion-emitted executables are easier to decompile since
they contain wrapper functions to invoke target operator im-
plementations in kernel libraries (see our paper for more de-
tailed discussion). Thus, in this evaluation we only focus on
decompiling executables compiled by TVM and Glow.

https://github.com/monkbai/DNN-decompiler/tree/b4f64783846b85cac4b0eb6c7a5595535cc858d3
https://github.com/monkbai/DNN-decompiler/tree/b4f64783846b85cac4b0eb6c7a5595535cc858d3
https://github.com/monkbai/DNN-decompiler/tree/b4f64783846b85cac4b0eb6c7a5595535cc858d3
https://github.com/monkbai/DNN-decompiler/tree/b4f64783846b85cac4b0eb6c7a5595535cc858d3
https://github.com/monkbai/DNN-decompiler/tree/b4f64783846b85cac4b0eb6c7a5595535cc858d3
https://github.com/monkbai/DNN-decompiler/tree/master/MyPinTool
https://github.com/monkbai/DNN-decompiler/tree/master/trace_filter.py
https://github.com/monkbai/DNN-decompiler/tree/master/ida
https://github.com/monkbai/DNN-decompiler/tree/master/ida

Table 2: Statistics of DNN models and their compiled executables evaluated in our study.
Model #Parameters #Operators TVM -O0 TVM -O3 Glow -O3

Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func. Avg. #Inst. Avg. #Func.
Resnet18 11,703,912 69 49,762 281 61,002 204 11,108 39
VGG16 138,357,544 41 40,205 215 41,750 185 5,729 33
FastText 2,500,101 3 9,867 142 7,477 131 405 14
Inception 6,998,552 105 121,481 615 74,992 356 30,452 112
Shufflenet 2,294,784 152 56,147 407 34,637 228 33,537 59
Mobilenet 3,487,816 89 69,903 363 46,214 228 37,331 52
Efficientnet 12,966,032 216 89,772 546 49,285 244 13,749 67

A.3 Set-up

A.3.1 Installation

Download the packed docker image, then run the command
below to unpack the .tar file into a docker image.

cat BTD-artifact.tar | docker import - btd

Create a container with the docker image.

docker run -dit --name BTD-AE btd /bin/bash

Open a bash in the container:

docker exec -it BTD-AE /bin/bash
cd /home

BTD can also be installed from source code, the detailed
instructions are listed in our artifact.

A.3.2 Basic Test

To run the evaluation of operator inference:

cd DNN-decompiler
git pull
./op_infer_eval.sh

Inference results are written in the output directory.
The output would be in format: Compiler Option-Model-
Operator Name/Type Pred: output. For example, the out-
put below indicates that a libjit_fc_f (Fully-Connected,
FC) operator in the vgg16 model compiled with Glow_2021
is correctly inferred as matmul (Matrix Multiplication).

GLOW_2021-vgg16-libjit_fc_f Pred: matmul
GLOW_2021-vgg16-libjit_fc_f Label: matmul

To run the evaluation of decompilation and rebuild:

cd DNN-decompiler
git pull
./decompile_eval.sh

This experiment will decompile and rebuild all 63 DNN
executables. It takes 24 hours to finish all experiments. The
output of rebuilt models and original DNN executables will be
printed on screen (see example in Decompilation Correctness
below). Corresponding decompilation outputs will be stored
in the evaluation directory.

After executing decompile_eval.sh, for each direc-
tory in evaluation, a topo_list.json containing the
network topology (1), a new_meta_data.json con-
taining dimensions information (2), and a series of
func_id.weights/biases_id.json containing all parame-
ters of the decompiled DNN model (3) will be generated.

Each item in topo_list.json will be: [‘node id’,
‘func_id.txt’, ‘operator type’, [input addresses], ‘output ad-
dress’, [input node ids], occurrence index].

Each item in new_meta_data.json will be:
[‘<func_id>.txt’, [operator dimensions], ‘operator en-
try address (in executable)’, ‘operator type’, with_parameter,
stride (if exists), padding (if exists)].

Examples can be found in README.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): BTD is able to decompile all 63 DNN executables into
model specifications that are (near) identical with input
models. The decompiled model specifications can be
used to rebuild new models that have identical output
(with minor precision loss) as the output of original DNN
executables.

A.4.2 Experiments

After decompilation experiments, all DNN model are rebuild
with decompiled model structures and extracted parameters
(stored in .json format). decompile_eval.sh will run each
rebuilt model (implemented in pytorch) and the original DNN
executable with the example image in binary format as input.
The output would be like this:

- vgg16_tvm_v09_O3
- Rebuilt model output:
Result: 282
Confidence: 9.341153

https://www.dropbox.com/s/o43uoxrxisozdq5/BTD-artifact.tar?dl=0
https://github.com/monkbai/DNN-decompiler
https://github.com/monkbai/DNN-decompiler/blob/master/README.md
https://github.com/monkbai/DNN-decompiler/blob/master/cat.png

- DNN Executable output:
Result: 282
Confidence: 9.341150

In the above example, both rebuilt model and DNN exe-
cutable output result as 282 (see 1000 classes of ImageNet),
and the confidence scores are 9.341153 and 9.341150, re-
spectively. While the confidence scores (or max values) are
slightly inconsistent, we interpret that such inconsistency is
caused by the floating-point precision loss between pytorch
model and DNN executable, i.e., the decompilation is still
correct.
(E1): [Decompilation Correctness] [10 human-minutes + 24

compute-hour + 120GB disk]: as described above.
How to: As described in A.3.2 Basic Test.
Results: The predicted label output by the original
DNN executable and the rebuilt model should be identi-
cal.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://github.com/onnx/models/blob/main/vision/classification/synset.txt
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

