
USENIX’23 Artifact Appendix: PolyFuzz: Holistic Greybox Fuzzing of
Multi-Language Systems

Wen Li, Jinyang Ruan, Guangbei Yi, Long Cheng, Xiapu Luo, and Haipeng Cai

A Artifact Appendix

A.1 Abstract
This artifact contains a functional version of PolyFuzz and the
necessary dataset for the evaluation. To facilitate the usage
of this artifact, we have prepared a Docker image with the
necessary components to execute the artifact and visualize the
result. Artifact users can compare the results obtained from
executing this artifact with those presented in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There are no security, privacy, or ethical concerns with using
this artifact.

A.2.2 How to access

We provided three ways to access our artifact package:

1. DOI is provided through FigShare
https://doi.org/10.6084/m9.figshare.20022893.v1

2. An evolving version is maintained on GitHub
The GitHub repository is:
https://github.com/Daybreak2019/PolyFuzz.git
A specific tag is provided:
https://github.com/Daybreak2019/PolyFuzz/releases/tag/v6.0

3. A docker image is provided with PolyFuzz installed
docker pull daybreak2019/polyfuzz:v1.1

A.2.3 Hardware dependencies

The host machine may need at least 16GB memory and
256GB hard disk space.

A.2.4 Software dependencies

PolyFuzz is mainly developed and tested on LLVM 11.0, Soot
4.3.0, Python 3.8/9 (and Python3-dev), and OpenJDK 8/11.
For ease of use of PolyFuzz, we have prepared a Docker image
with all compilation and run-time dependencies installed.

Moreover, real-world benchmarks have their own partic-
ular/additional dependencies. Hence, to fully reproduce the
results in the paper, users should install these dependencies
successfully, which have been provided via relevant scripts in
the PolyFuzz repository on GitHub.

More specifically, we note that the Docker image includes
all the libraries/frameworks underlying PolyFuzz; thus it can
be used for experimenting with other real-world subjects as
well (i.e., saving the time/trouble for installing ubuntu, llvm,
etc.) On the other hand, since our real-world subjects are
sizable, including the complete compilation and run-time en-
vironment (e.g., all the third-party library dependencies) for
all of them in the single Docker image would make it clumsy
to deploy conveniently. Using a traditional virtual machine
would aggregate this concern since they are even heavier. This
is why we chose to include in the Docker image only the setup
for the subjects in which any vulnerabilities were discovered
by PolyFuzz at the paper submission time. Users can still use
the scripts in the repository to set up the environments for
other benchmarks; we have tested the scripts on our servers.

A.2.5 Benchmarks

For demonstration purposes, we use 5 multi-language bench-
marks with vulnerabilities detected as concrete examples and
have installed all of their dependencies in the Docker image.
Specifically, the installed benchmarks include 4 Python-C
benchmarks (i.e., Pillow, Libsmbios, Ultrajson, Bottleneck)
and 1 Java-C benchmark (i.e., Jansi).

A.3 Set-up

A.3.1 Installation

• Step 1: Config AFL++

git clone https://github.com/Daybreak2019/PolyFuzz.git

sudo PolyFuzz/AFLplusplus/afl-system-config

• Step 2: Download the Docker image and run a Docker
container based on the image

docker pull daybreak2019/polyfuzz:v1.1

docker run -it daybreak2019/polyfuzz:v1.1

https://github.com/python-pillow/Pillow
https://github.com/dell/libsmbios
https://github.com/ultrajson/ultrajson
https://github.com/pydata/bottleneck
https://github.com/fusesource/jansi


• Step 3: Update PolyFuzz to the latest version and build
the project within the container

cd /root/PolyFuzz
git pull
. build.sh

A.3.2 Basic Test

To validate whether the environment is ready, a simple test
can be run as follows:

cd /root/PolyFuzz/langspec/python/tests/case4
./build.sh
./sasg_entry.sh

The results should be similar as shown in Figure 1. Then
"CTRL + C" can be used to quit the fuzzing.

Figure 1: A basic test for PolyFuzz

A.4 Evaluation workflow
We provided scripts for automating all the experiments during
the evaluation. Specifically in this artifact, we setup the envi-
ronment for the experiments on 5 multi-language benchmarks,
including 4 Python-C benchmarks (i.e., Pillow, Libsmbios,
Ultrajson, Bottleneck) and 1 Java-C benchmark (i.e., Jansi).
For each benchmark, the expected fuzzing time is 24 hours.

A.4.1 Major Claims

For the 5 multi-language benchmarks, PolyFuzz should be
able to reproduce the vulnerabilities reported in Table 10 of
the paper.

A.4.2 Experiments

(E1): [Experiment on Pillow] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Pil-
low in the container, then start fuzzing for 24 hours.
How to: Rebuild Pillow and run PolyFuzz on it.
Preparation: None

Execution: Run commands as follows:
1. Build Pillow
cd /root/PolyFuzz/benchmarks/script/multi-
benches/Pillow
./build.sh

2. Run fuzzing on Pillow
cd drivers/fig_process
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the
end. The corresponding test cases would be gener-
ated under the directory fuzz/out/default/crashes and
fuzz/out/default/hangs. As an example, Figure 2 shows
the fuzzing results of Pillow, which is a snapshot of the
fuzzing at 1 hour 41 mins. To validate whether these
hangs are true positives, we can use the following com-
mands to run the tests one by one:

• 1. entry the fuzz directory
cd /root/PolyFuzz/benchmarks/script/multi-
benches/Pillow/drivers/fig_process/fuzz

• 2. list the tests of hangs (results as shown in Fig-
ure 3.)
ll out/default/hangs/

• 3. run a single test with the driver (results as shown
in Figure 4.)
python ../fig_process.py out/default/hangs/id:...

Figure 2: Example of fuzzing result on Pillow

Figure 3: Hang tests of fuzzing result on Pillow

(E2): [Experiment on Libsmbios] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Lib-
smbios in the container, then start fuzzing for 24 hours.

How to: Rebuild Libsmbios and run PolyFuzz on it.

https://github.com/python-pillow/Pillow
https://github.com/dell/libsmbios
https://github.com/ultrajson/ultrajson
https://github.com/pydata/bottleneck
https://github.com/fusesource/jansi
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://github.com/dell/libsmbios
https://github.com/dell/libsmbios
https://github.com/dell/libsmbios
https://github.com/dell/libsmbios


Figure 4: A single test result of Pillow with driver
fig_process.py

Preparation: None
Execution: Run commands as follows:

• Build Libsmbios
cd /root/PolyFuzz/benchmarks/script/multi-
benches/libsmbios
./build.sh

• Run fuzzing on Libsmbios
cd drivers/op_mem
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

(E3): [Experiment on Ultrajson] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Ul-
trajson in the container, then start fuzzing for 24 hours.

How to: Rebuild Ultrajson and run PolyFuzz on it.
Preparation: None
Execution: Run commands as follows:

• Build Ultrajson
cd /root/PolyFuzz/benchmarks/script/multi-
benches/ultrajson
./build.sh

• Run fuzzing on Ultrajson
cd drivers/encode
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

(E4): [Experiment on Bottleneck] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Bot-
tleneck in the container, then start fuzzing for 24 hours.

How to: Rebuild Bottleneck and run PolyFuzz on it.
Preparation: None
Execution: Run commands as follows:

• Build Bottleneck
cd /root/PolyFuzz/benchmarks/script/multi-
benches/bottleneck
./build.sh

• Run fuzzing on Bottleneck
cd drivers/random_shape2
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

(E5): [Experiment on Jansi] [30 human-minutes + 24
compute-hour + 128GB disk]: users should rebuild Jansi
in the container, then start fuzzing for 24 hours.

How to: Rebuild Jansi and run PolyFuzz on it.
Preparation: None
Execution: Run command as follows:

• Build Jansi
cd /root/PolyFuzz/benchmarks/script/multi-
benches/jansi
./build.sh

• Build fuzzing drivers of Jansi
cd drivers
./build.sh

• Run fuzzing on Jansi
cd OutStream
./sasg_entry.sh

Results: PolyFuzz should report crashes/hangs in the end.

A.5 Notes on Reusability
Considering the time cost of fuzzing experiments, in the arti-
fact package, we only demonstrated 5 of the multi-language
benchmarks used in our paper. However, for all of the bench-
marks, we have provided similar scripts (under directory Poly-
Fuzz/benchmarks/script) to the ones demonstrated in the ap-
pendix; users can follow the steps above to run PolyFuzz on
other benchmarks.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://github.com/python-pillow/Pillow
https://github.com/dell/libsmbios
https://github.com/dell/libsmbios
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/ultrajson/ultrajson
https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://github.com/pydata/bottleneck
https://github.com/fusesource/jansi
https://github.com/fusesource/jansi
https://github.com/fusesource/jansi
https://github.com/fusesource/jansi
https://github.com/fusesource/jansi
https://github.com/fusesource/jansi
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


