ARTIFACT
EVALUATED
susenix

»

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix: Reassembly is Hard: A Reflection on
Challenges and Strategies

Hyungseok Kim'?, Soomin Kim', Junoh Lee!, Kangkook Jee?, and Sang Kil Cha!

YKAIST *The Affiliated Institute of ETRI 3University of Texas at Dallas
{witbring,soomink,junoh,sangkilc} @kaist.ac.kr kangkook.jee @utdallas.edu

A Artifact Appendix

A.1 Abstract

REASSESSOR is a tool for finding errors in the implemen-
tations of existing reassemblers. This artifact includes the
source code of REASSESSOR, the dataset used in our paper,
and several scripts for reproducing the results in the paper.
As a preprocessing step, one needs to run three existing re-
assemblers on our dataset, including Ramblr, RetroWrite, and
Ddisasm. We provide a dockerized environment to run them.
The preprocessing step produces a re-assemblable assembly
file for each binary, and REASSESSOR uses those files to find
reassembly errors. The next section details each step to repro-
duce the results in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Not applicable.

A.2.2 How to access

The source code of REASSESSOR is accessible through
GitHub at https://github.com/SoftSec-KAIST/
Reassessor/tree/v1.0.0. We also provide our dataset at
https://doi.org/10.5281/zenodo.7178116.

A.2.3 Hardware dependencies

To reproduce the whole results, it requires at least 2.5TB of
disk space. In our experiments, we used a machine equipped
with 8 cores of CPUs and 128GB of RAM.

A.2.4 Software dependencies

REASSESSOR is designed to run on a Linux machine, and
we tested it on Ubuntu 18.04 and Ubuntu 20.04. Also, RE-
ASSESSOR is written in Python 3 (3.6), and it depends on
pyelftools (>= 0.29) and capstone (>= 4.0.2). Besides,

Docker needs to be installed on the same machine to run re-
assemblers within a Docker container. Our scripts assume that
you can run Docker commands as a regular (unprivileged)
user; thus, no need to run them with sudo.

A.2.5 Benchmarks

Our benchmark is accessible through Zenodo: https://doi.
org/10.5281/zenodo.7178116. We created our benchmark
with various combinations of compilers, linkers, target ISAs,
and compiler options.

* ISA: x86 and x86-64 (= 2)

e Compilers: GCC v7.5.0 and Clang v12.0 (=2)

* PIE/non-PIE: produce a PIE or a non-PIE (= 2)

e Optimization: 00, O1, 02, 03, Os, and Ofast (= 6)
 Linkers: GNU Id v2.30 and GNU gold v1.15 (= 2)

Also, our benchmark was created by compiling two source
packages totaling 122 executable programs as follows.'

* GNU coreutils (v8.30): 107 executable programs.
e GNU binutils (v2.31.1): 15 executable programs.

A.3 Set-up
A.3.1 Installation

Once you download our source code from the GitHub reposi-
tory, you can install it using the following command:
$ pip3 install -r requirements.txt

$ python3 setup.py install -user

A.3.2 Basic Test

You can run REASSESSOR with a sample program as follows:
(Step 1): Build a sample program:

$ cd ./example

$. /make

$cd ..

'We exclude 31 programs in SPEC CPU 2006 from the dataset because
of a licensing issue. Instead, we provide SSH server to grant access to all
datasets we made.

https://github.com/SoftSec-KAIST/Reassessor/tree/v1.0.0
https://github.com/SoftSec-KAIST/Reassessor/tree/v1.0.0
https://doi.org/10.5281/zenodo.7178116
https://doi.org/10.5281/zenodo.7178116
https://doi.org/10.5281/zenodo.7178116

(Step 2): Run preprocessing.py to reassemble it:
$ mkdir -p output
$ python3 -m reassessor.preprocessing \
./example/bin/hello ./output
$ 1s output/reassem/
ddisasm.s retrowrite.s

(Step 3): Run REASSESSOR to find reassembly errors
$ python3 -m reassessor.reassessor \
example/bin/hello example/asm/ output/ \
--retrowrite ./output/reassem/retrowrite.s
$ 1s output/errors/retrowrite/
disasm diff.txt sym diff.txt sym errors.dat
sym_errors.json

REASSESSOR produces the following files as out-
put: ddisasm_diff.txt,sym_errors.dat,sym diff.txt,
sym_errors. json. Firstly, disasm_diff.txt contains a
list of disassembly errors (one per line); each line contains the
relevant address, reassembler-generated assembly line, and
compiler-generated assembly line. sym_errors.dat is a raw
output file containing a list of symbolization errors. This file
is used to generate other two files: sym_errors. json and
sym_diff.txt. sym_diff.txt is a human-readable repre-
sentation of sym_errors.dat. Each line of the file contains
address, error type, reassembler-generated assembly code,
and compiler-generated code, for each error found. Finally,
sym_errors. json contains detailed information about each
symbolization error found, including the relevant assembly
file, line number, relocatable expression type, normalized
code, repairability, and so on. The file is written in the JSON
format.

A.4 Evaluation workflow
A.4.1 Preprocessing step for experiments

[10 human minutes + 5,000 CPU hours + 60 GB disk]

REASSESSOR finds reassembly errors by diffing compiler-
generated assembly code and reassembler-generated assembly
code. Thus, we need to reassemble benchmark binaries as
follows:

(Step 1): Download the dataset:
$ cd artifact
$ tar -xzf /path/to/dataset/benchmark.tar.gz .
$ 1s dataset/
binutils-2.31.1 coreutils-8.30

(Step 2): Run run_preproc.py to obtain reassembler-
generated assembly code from each reassembler:
$ python3 run_preproc.py
run_preproc.py will then generate assembly files
under the . /output directory:
$ 1s ./output
binutils-2.31.1 coreutils-8.30

$ cd \
output/binutils-2.31.1/x64/clang/nopie/o0-bfd/addr2line/
$ 1ls reassem

ddisasm.s ramblr.s

A.4.2 Major Claims

(C1): REASSESSOR is able to find diverse reassembly er-
rors. This is proven by the experiment (E1) described in
Section 5.3 as well as Table 4.

(C2): Composite relocation expressions are prevalent in real-
world binaries, and precise CFG recovery is a necessary
condition for sound reassembly of x86-64 PIEs. This
is proven by the experiment (E2) described in Section
5.2.2.

(C3): There are previously unknown FN/FP patterns. This is
proven by the experiment (E3) described in Section 5.4.1
and 5.4.2.

(C4): Preventing data instrumentation can mitigate the sym-
bolization challenge. This is proven by the experiment
(E4) described in Section 5.5.2

A.4.3 Experiments

(E1): [10 human minutes + 140 CPU hours + 330GB disk]
The experiment will search for reassembly errors by
running REASSESSOR.

How to: First, run run_reassessor.py to find re-
assembly errors. Second, run classify_errors.py to
collect the errors. Third, run get_summary.py to get the
summarized result.

Preparation: The preprocessing step in §A.4.1 is re-
quired to have reassemablable assembly files.
Execution: Run run_reassessor.py

$ python3 run_reassessor.py --core 6

Results: First, check the report files described in
§A.3.2:

$ cd output/binutils-2.31.1/x64/clang/nopie/o0-bfd/

$ cd addr2line/

$ 1ls errors

ddisasm ramblr

$ ls errors/ddisasm/

disasm diff.txt sym diff.txt sym errors.dat

sym_errors. json

Second, run classify_errors.py to collect and
classify symbolization errors from sym_diff.txt files:
$ python3 classify_errors.py --core 8

Check the results under the triage folder:

$ 1s triage

ddisasm ramblr retrowrite

$ ls triage/ddisasm/x64/nopie/

E1FN.txt E1FP.txt E2FN.txt E2FP.txt E3FN.txt
E3FP.txt ...

Each file has a different set of errors, and each line
of the files contains a relevant file name, error type,
reassembler-generated assembly line, and compiler-
generated assembly line.

Third, run get_summary.py to get a summarized result
presented in Table 4:
$ python3 get_summary.py --core 8

(E2): [10 human minutes + 2.5 CPU hours + 100MB disk]
This experiment examines all relocatable expressions
in our benchmark and reports the distributions of relo-
catable expressions for a different set of assembly files.
Also, the experiment will show that the proportion of
label-relative (Type VII) relocatable expressions in x86-
64 PIE binaries is not negligible.

How to: First, run get_asm_statistics.py to exam-
ine compiler-generated assembly files. Second, run
get_e7_errors.sh to find E7 errors for x86-64 PIE
binaries.

Preparation: (E1) experiment needs to be
run first since get_asm_statistics.py and
get_e7_errors.sh refer to data files (gt.dat
and sym_diff.txt) that REASSESSOR made.
Execution: Run get_asm_statistics.py and
get_e7_errors.sh:

$ python3 get_asm_statistics.py -core 8

$ /bin/bash get_e7_errors.sh

Result: First, get_asm_statistics.py shows the dis-
tribution of relocatable expressions, and the proportion
of composite relocatable expressions. Also, it reports
how many binaries have abnormal cases including
composite relocatable expressions pointing to outside
of valid memory ranges and code pointers referring
to non-function entries. Second, get_e7_errors.sh
reports how many x86-64 binaries suffer from E7 errors.

(E3): [10 human minutes + 1 CPU minute + 2.2GB disk]
This experiment will find previously unseen symboliza-
tion errors.

How to: Run dissect_errors.sh to find previously
unseen symbolization errors.

Preparation: (E1) experiment is required since
dissect_errors.sh examines symbolization errors
from sym_diff.txt files.

Execution: Run dissect_errors.sh:

$ /bin/bash dissect_errors.sh

Results: dissect_errors.sh reports how many
reassembler-generated files have previously unseen
errors. Also, dissect_errors.sh generates the report
files: atomic_fn_cases.txt, atomic_fp_cases.txt,
and label_err_fp_cases.txt. Each line of the files
contains a relevant file name, error type, reassembler-
generated assembly line, and compiler-generated assem-

bly line. atomic_fn_cases.txt contains false negative
cases where reassemblers misidentify atomic relocat-
able expressions as literals. atomic_fp_cases.txt
contains false positive cases where reassemblers falsely
symbolize atomic relocatable expressions as composite
forms. Lastly, label_err_ fp_cases.txt contains
cases where symbolized labels have the same form
as in the original one, while only the label values are
misidentified.

(E4): [10 human minutes + 1 CPU minute + 6GB disk]
This experiment measures an empirical lower bound
of the number of reparable symbolization errors when
preventing data instrumentation. Specifically, this exper-
iment will count symbolization errors that satisfy the
criteria we suggested in Section 5.5.2.

How to: Run check_reparable_errors.sh to find
symbolization errors that are reparable.

Preparation: (E1) experiment is required since
check_reparable_errors.sh examines the error list
files that classify_errors.sh generates.

Execution: Run check_reparable_errors.sh:

$ /bin/bash check_reparable_errors.sh

Results: check_reparable_errors.sh reports how
many symbolization errors satisfy the reparable
conditions we introduced in Section 5.5.2. Also,
reparable_errors.txt contains the list of reparable
symbolization errors; each line of the file has a relevant
file name, error type, reassembler-generated assembly
line, and compiler-generated assembly line.

A.5 Notes on Reusability

A.5.1 How to make a new dataset

)

If you want to use a new dataset, build binaries with ‘—g
option and ‘--save-temps=obj’ option. Also, if you want
to make non-pie binaries, add ‘-Wl, -—emit-relocs’ linker
option to preserve relocation information.

A.5.2 How to test different versions of reassemblers

If you wish to run REASSESSOR with newer versions
of reassemblers, update the execution commands in the
reassemble () method in preprocessing.py.

A.6 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Preprocessing step for experiments
	Major Claims
	Experiments

	Notes on Reusability
	How to make a new dataset
	How to test different versions of reassemblers

	Version

