
USENIX’23 Artifact Appendix: A comprehensive, formal and automated
analysis of the EDHOC protocol

Charlie Jacomme
Inria Paris*

Elise Klein
Inria Nancy

Université de Lorraine

Steve Kremer
Inria Nancy

Université de Lorraine

Maïwenn Racouchot
Inria Nancy

Université de Lorraine

A Artifact Appendix

A.1 Abstract
This artifact permits to reproduce the formal verification of
the LAKE EDHOC protocol. It comes as a docker image
containing

• the software needed (SAPIC+, TAMARIN, PROVERIF,
DEEPSEC);

• the models of the LAKE EDHOC protocol;

• the scripts to batch run the verification of the models
using the SAPIC+ platform.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

The artifact is hosted on docker hub: https://hub.docker.
com/r/protocolanalysis/lake-edhoc/.

A.2.3 Hardware dependencies

There are two main sets of experiments, one relying on the
PROVERIF tool and one on the TAMARIN tool. The PROVERIF
experiments can be executed in a couple of hours on a modern
laptop (8 threads at 2.8Ghz), while the Tamarin one while
take multiple days. Having access to a server with 48 threads
ensures that everything will run under a day.

A.2.4 Software dependencies

Docker is the only required dependency.

A.2.5 Benchmarks

[Mandatory] None.

*This work was partly done while Charlie Jacomme was at the CISPA
Helmholtz Center for Information Security.

A.3 Set-up

[Mandatory] Installation instruction for Docker are
provided at https://docs.docker.com/engine/
install/.

A.3.1 Installation

The artifact is fetched with

docker pull protocolanalysis/lake-edhoc:draft-14

A.3.2 Basic Test

A bash should be opened inside the docker when running:

docker run -it protocolanalysis/lake-edhoc:draft-14 bash

A.4 Evaluation workflow

Once inside the Docker, there are two subfolders
lake-draft12 and lake-draft14. Each folder con-
tains a README, bash scripts to run the exhaustive
verification as well as the tool chain to generate the models
from jinja2 templates. To ease the artifact evaluation, we
automated all the relevant verifications under two main
scripts:

• ./run-proverif.sh

• ./run-tamarin.sh

A.4.1 Major Claims

The LAKE EDHOC protocol draft 12 and draft 14 can be
analyzed automatically using the SAPIC+ platform under dif-
ferent scenarios. This yields the analysis results provided in
Table 7 and 8 of Appendix B of our paper. Those tables where
manually produced by formatting in LATEX the results stored
in the two csv files located in the expected-results folder.

https://hub.docker.com/r/protocolanalysis/lake-edhoc/
https://hub.docker.com/r/protocolanalysis/lake-edhoc/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/


A.4.2 Experiments

(E1): PROVERIF results: 5 human-minutes + 5.8 single-
threaded (2.8Ghz) compute hours. With 7 threads at
2.8Ghz and 31 GB of RAM the verification runs in 62
minutes, and can go down to 31 minutes with additional
cores.
Preparation: Enter the docker image. Check the num-
ber of available threads, e.g. with htop.
Execution: Run ./run-proverif.sh i, where i is
the number of available threads, and wait for full com-
pletion. The script displays which verification are started
(mainly for debugging purposes).
Results: The script produces a res-proverif.csv
file. To compare the obtained results with
the one stored in expected-results, the
compare-diff-proverif.sh script highlights
any differences. The diff should only highlight timing
differences, or additional timeouts in case of different
hardware.

(E2): TAMARIN results: 5 human-minutes + 64 single-
threaded (2.8Ghz) compute hours. With parallelization
over 48 threads at 2.8Ghz and 756GB, the experiments
takes 14 hours.
Preparation: Enter the docker image. Check the num-
ber of available threads, e.g. with htop.
Execution: Run ./run-tamarin.sh i, where i is the
number of threads divided by 4 (as we allocate 4 threads
to each instance of TAMARIN), and wait for full comple-
tion. The script displays which verification are started
(mainly for debugging purposes).
Results: The script produces a res-tamarin.csv file.
To compare the obtained results with the one stored in
expected-results, the compare-diff-tamarin.sh
script highlights any differences. The diff should only
highlight timing differences, or additional timeouts in
case of different hardware.

In addition, the privacy analysis of Table 6 can also be
verified, running ./lake-draft12/run-anonimity.sh and
./lake-draft14/run-anonimity.sh.

A.5 Notes on Reusability
The docker also contains a README.md meant for users famil-
iar with the underlying TAMARIN/PROVERIF/SAPIC+ tool
chain, which explains how to either reuse our general structure
or update the models.

To build the docker, the following actions can be per-
formed:

git clone https://github.com/charlie-j/tamarin-prover/
cd tamarin-prover;
git checkout e59304fb8f51e1e25118362daeb3fc008a6e292d;
./etc/docker/build.sh
./etc/docker/build-platform.sh
cd ../
git clone https://github.com/charlie-j/edhoc-formal-analysis

git checkout e2e3f7407e9eb331a8112614fe9e116e57a25e51
cd edhoc-formal-analysis
./Docker/build.sh

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


