
USENIX’23 Artifact Appendix: (M)WAIT for It: Bridging the Gap
between Microarchitectural and Architectural Side Channels

Ruiyi Zhang
CISPA Helmholtz Center
for Information Security

Taehyun Kim
Independent

Daniel Weber
CISPA Helmholtz Center
for Information Security

Michael Schwarz
CISPA Helmholtz Center for Information Security

A Abstract

As discussed in the paper, we reverse engineer undocumented
properties of the monitor- and mwait- instruction family
that help convert microarchitectural into architectural states.
In three case studies, we show the versatility of our primitive.
First, with Spectral, we present a way of enabling transient-
execution attacks to leak bits architecturally with up to 200
kbit/s without requiring any timer. Second, we show tradi-
tional side-channel attacks without relying on a timer. Finally,
we demonstrate that when augmented with a coarse-grained
timer, we can also mount interrupt-timing attacks, allowing
us to, e.g., detect which website a user opens. This artifact
contains the description of several experiments and proof-of-
concepts for the paper.

A.1 Description & Requirements

A.1.1 Security, privacy, and ethical concerns

In our experiments, we need to modify page table entries via
the PTEditor library1.

A.1.2 How to access

The source code for this paper is available on GitHub:
https://github.com/cispa/mwait/tree/ae.

A.1.3 Hardware dependencies

We exploit the unprivileged idle-loop optimization instruc-
tions umonitor and umwait introduced with the new Intel
microarchitectures (Tremont and Alder Lake). While the re-
verse engineering and analysis of all mwait- variants are
generic both on Intel and AMD processors.

1https://github.com/misc0110/PTEditor

A.1.4 Software dependencies

We recommend Ubuntu 18.04 or 20.04 and all our experi-
ments are tested on Ubuntu 20.04 LTS (Linux kernel 5.4).

A.1.5 Benchmarks

None.

A.2 Set-up
The individual proof-of-concept implementations are self-
contained and come with a Makefile and an individual de-
scription that explains how to build, run and interpret the
proof-of-concept. In order to run all the proof-of-concepts,
the following prerequisites need to be fulfilled:

A.2.1 Installation

• Build tools (gcc, make)

• Intel latest CPUs (Tremont and Alder Lake)

• PTEditor

• Stress

A.2.2 Basic Test

The folder Intel-umwait contains the basic experiment to
check whether umonitor and umwait work on the current
tested CPUs.

A.3 Evaluation workflow
A.3.1 Major Claims

(C1): We exploit the unprivileged idle-loop optimization in-
structions umonitor and umwait introduced with the
new Intel microarchitectures (Tremont and Alder Lake).
Although not documented, these instructions provide ar-
chitectural feedback about the transient usage of a speci-
fied memory region.

1

https://github.com/cispa/mwait/tree/ae
https://github.com/misc0110/PTEditor


(C2): We experimentally confirmed that the Intel’s undocu-
mented timed mwait feature can be enabled by setting
bit 31 in MSR (0xe2). We further reverse engineered
the feature and found that bit 1 of the ECX register of the
mwait instruction indicates that the timeout feature is
used. The maximum waiting time is an implicit 64-bit
timestamp-counter value stored in the EDX:EBX register
pair.

(C3): With Spectral, we present a way of enabling transient-
execution attacks to leak bits architecturally with up to
200/ without requiring any architectural timer.

(C4): We show traditional side-channel attacks without rely-
ing on an architectural timer.

(C5): We demonstrate that when augmented with a coarse-
grained timer, we can also mount interrupt-timing at-
tacks, allowing us to, detect which website a user opens.

A.3.2 Experiments

(E1): Intel-umwait
Preparation: Intel Tremont and Alder Lake CPUs
Results: Test if umonitor/umwait work on the current
processors

(E2): trigger-tester
How to: We analyzed different wake-up triggers for all
mwait- variants both on Intel and AMD machines, in-
cluding cache coherence functions. Moreover, we ana-
lyzed the memory type of the monitored address range
by modifying the page table via the library PTEditor.
Results: As shown in the Table 1-2 in the paper.

(E3): timed-mwait
How to: We reverse engineered the Intel’s undocu-
mented timed-mwait feature via a simple Linux kernel
module.
Results: As claimed in the C2.

(E4): comparison
How to: We constructed a benchmark detecting fully
asynchronous events with TWMand other conventional
side-channel attacks for reference.
Results: As shown in the Figure 1-2, Table 3 in the
paper.

(E5): covert-channel
How to: We created a timer-less covert channel with
umonitor and umwait.
Results: As shown in the Figure 4 in the paper.

(E6): spectral
How to: We used the timer-less covert channel for spec-
tre attacks.
Results: As shown in the Figure 5-6 in the paper.

(E7): aes-example
How to: We reproduced attacks on AES T-table imple-
mentation based on our Timer-less Timing Measure-
ment.
Preparation: The deprecated OpenSSL 1.0.1e.

Results: As shown in the Figure 3,7 in the paper.
(E8): website-fingerprinting

How to: We detected network interrupts while opening
a website.
Results: As shown in the Figure 8 in the paper.

A.4 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

2

https://secartifacts.github.io/usenixsec2023/

	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


