
USENIX’23 Artifact Appendix:
<FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler>

Junjie Wang1*, Zhiyi Zhang2*, Shuang Liu1+, Xiaoning Du3, and Junjie Chen1

1College of Intelligence and Computing, Tianjin University
2CodeSafe Team, Qi An Xin Group Corp.

3Monash University

A Artifact Appendix

This artifact appendix is meant to be a self-contained docu-
ment which describes a roadmap for the evaluation of FuzzJIT.

A.1 Abstract

FuzzJIT is a fuzzing tool for JavaScript engines JIT compiler,
built on top of Fuzzilli [1]. FuzzJIT maintains a queue that
contains all samples that triggered new code coverage in the
testing subjects. At the start of each fuzzing round, FuzzJIT
selects a test case from the queue and mutates it to generate
new test cases. Generated new test cases are executed, and
the test cases that triggered new code coverage are then added
to the fuzzing queue for further mutation. Our main contribu-
tions include a for-loop structure to trigger the JIT compilers,
a test function embedding JIT compiler bugs revealing ele-
ments, and an enhanced oracle to check if the test function
output differently before/after the JIT compilation.

A.2 Description & Requirements

In this section, we list the information necessary to recreate
the same experimental setup we have used to run our artifact.
We also list the hardware and software requirements to run our
artifact. At last, we list benchmarks used to produce results
with our artifact.

A.2.1 Security, privacy, and ethical concerns

None.

A.2.2 How to access

FuzzJIT can be obtained from GitHub: https://github.c
om/SpaceNaN/fuzzjit/commit/a3d3f6da7f7f8577476
892d6135eee6c50afc7ad.

A.2.3 Hardware dependencies

In our experiments, we used a workstation with a processor
of 12th Gen Intel Core i9-12900K*24 and 32 GB memory.
Any similar configuration should work too.

A.2.4 Software dependencies

In our experiment, FuzzJIT runs on a 64-bit Ubuntu 22.04.01
LTS system. Other Linux operating systems should work too.
The same as Fuzzilli, FuzzJIT is written in Swift, therefore,
the installation of Swift is required. Swift 5.7 and 5.3 are
tested working.

A.2.5 Benchmarks

Our testing subjects include four mainstream JavaScript en-
gines, JavaScriptCore (the JavaScript engine of the Safari
browser), V8 (the JavaScript engine of the Chrome browser),
Spidermonkey (the JavaScript engine of Firefox), and Chakra-
Core (the JavaScript engine of Edge). In our evaluation,
we compared FuzzJIT with four baselines, including Jsfun-
fuzz [3], Superion [4], DIE [2], and Fuzzilli [3].

A.3 Set-up
In this section, we list the installation and configuration steps
required to prepare the environment to be used for the evalua-
tion of our artifact.

A.3.1 Installation

The running procedure of FuzzJIT is the same with Fuzzilli.
1. Download Swift from its download page: https://ww

w.swift.org/download/, for example:

wget https :// download.swift .org/ swift−5.7−release /
ubuntu2204−aarch64/swift−5.7−RELEASE/swift−5.7−
RELEASE−ubuntu22.04−aarch64.tar.gz

2. Uncompress the downloaded file.

https://github.com/SpaceNaN/fuzzjit/commit/a3d3f6da7f7f8577476892d6135eee6c50afc7ad
https://github.com/SpaceNaN/fuzzjit/commit/a3d3f6da7f7f8577476892d6135eee6c50afc7ad
https://github.com/SpaceNaN/fuzzjit/commit/a3d3f6da7f7f8577476892d6135eee6c50afc7ad
https://www.swift.org/download/
https://www.swift.org/download/

tar zxvf ./ swift−5.7−RELEASE−ubuntu22.04−aarch64.tar.gz

3. Export the path of Swift to an environment variable.

export PATH=~/swift−5.7−RELEASE−ubuntu22.04−aarch64/usr/
bin:\${PATH}

4. Download FuzzJIT from GitHub.

git clone https :// github .com/SpaceNaN/fuzzjit

5. Compile the FuzzJIT.

swift build [−c release]

A.3.2 Basic Test

The user can run the following command to see if FuzzJIT
works.

swift run FuzzilliCli −−help

A.4 Evaluation workflow
We list the operational steps and experiments to evaluate
FuzzJIT.

A.4.1 Major Claims

Our paper makes four major claims.
C1: FuzzJIT can be used to uncover new bugs in the

JavaScriptCore/V8/Spidermonkey/ChakraCore. This is
proven by the experiments (E1).

C2: FuzzJIT can achieve better code coverage growth than
baselines. This is proven by the experiments (E2).

C3: FuzzJIT can achieve better syntax correctness rate than
baselines. This is proven by the experiments (E3).

C4: FuzzJIT can achieve relatively good throughput than
baselines. This is proven by the experiments (E4).

A.4.2 Experiments

E1: Finding bugs in testing subjects. One week of fuzzing
should work:
How to: Fuzzing given targets for about one week or
longer to see any crashes triggered.
Preparation and execution: To fuzz JavaScriptCore
with FuzzJIT:
1. Download JavaScriptCore.

git clone https :// github .com/WebKit/webkit

2. Apply Targets/JavaScriptCore/Patches/*. This step
will be a little bit tricky. When the version does not
match, the user needs to manually apply the patch.

3. Run the Targets/JavaScriptCore/fuzzbuild.sh script in
the WebKit root directory.
4. FuzzBuild/Debug/bin/jsc will be the JavaScript shell
for the fuzzer.
5. Fuzz JavaScriptCore.

swift run −c release FuzzilliCli −− profile =jsc −−
timeout=500 −−storagePath=./ jsc / / path / to /webkit/
FuzzBuild/Debug/bin/ jsc

To fuzz V8 with FuzzJIT.
1. First download depot_tools.

git clone https :// chromium.googlesource.com/chromium/
tools/depot_tools . git

2. Export depot_tools to an environment variable.

export PATH=\$PATH:/path/to/depot_tools

3. Configure gclient.

mkdir v8
cd v8
gclient config https :// chromium.googlesource.com/v8/

v8

4. Synchronize V8’s source code.

gclient sync

5. Run the Targets/V8/fuzzbuild.sh script in the v8 root
directory.
6. out/fuzzbuild/d8 will be the JavaScript shell for the
fuzzer.
7. Fuzz V8.

swift run −c release FuzzilliCli −− profile =v8 −−
timeout=500 −−storagePath=./v8/ / path / to /v8/out /
fuzzbuild /d8

To fuzz Spidermonkey with FuzzJIT.
1. Download Spidermonkey source code.

git clone https :// github .com/mozilla/gecko−dev

2. Apply Targets/Spidermonkey/Patches/*. This step will
be a little bit tricky. When the version does not match,
the user needs to manually apply the patch.
3. Run the Targets/Spidermonkey/fuzzbuild.sh script in
the js/src directory of the Firefox checkout.
4. ./fuzzbuild_OPT.OBJ/dist/bin/js will be the JavaScript
shell for the fuzzer.
5. Fuzz Spidermonkey.

swift run −c release FuzzilliCli −− profile =
spidermonkey −−timeout=500 −−storagePath=./
spidermonkey/ / path / to /gecko−dev/js / src /
fuzzbuild_OPT.OBJ/dist/ bin / js

To fuzz ChakraCore with FuzzJIT.
1. Download ChakraCore source code.

git clone https :// github .com/chakra−core/ChakraCore

2. Apply Targets/ChakraCore/Patches/*. This step will
be a little bit tricky. When the version does not match,
the user needs to manually apply the patch.
3. Run the Targets/ChakraCore/fuzzbuild.sh script in the
ChakraCore directory.
4. FuzzBuild/Debug/ch will be the JavaScript shell for
the fuzzer.
5. Fuzz ChakraCore.

swift run −c release FuzzilliCli −− profile =chakracore
−−timeout=500 −−storagePath=./ chakracore / / path /
to / chakracore /FuzzBuild/Debug/ch

Results: Fuzzing is a random procedure, but enough
time of fuzzing should reproduce the crashes.

E2: Evaluating code coverage. One week of fuzzing should
work:
How to: FuzzJIT/Fuzzilli update the fuzzing status per
minute, as shown in Figure 1. We can read the code
coverage information from the "Coverage:" row of the
FuzzJIT/Fuzzilli interface after one week of fuzzing. For
Jsfunfuzz, we fail to obtain its coverage information. For
Superion/DIE, which are AFL based, we can also read
the coverage information from the "map density" row
from their interface.

E3: Evaluating syntax correctness rate. One week of fuzzing
should work:
How to: FuzzJIT/Fuzzilli update the fuzzing status per
minute. We can read the sample syntax correctness rate
information from the "Correctness Rate:" row of FuzzJIT
interface after one week of fuzzing. For Jsfunfuzz/Su-
perion/DIE, we provide a Python script to calculate the
syntax correctness rate, which is at /path/to/FuzzJIT
/script/calculate_syntax_error.py.

E4: Evaluating throughput. One week of fuzzing should
work:
How to: FuzzJIT/Fuzzilli update the fuzzing status per
minute. We can read the throughput information from the
"Total Execs:" row of FuzzJIT interface after one week
of fuzzing. For Jsfunfuzz, its throughput is determined
by its timeout threshold since almost all samples can not
be finished in given time. For Superion/DIE, we can read
its throughput information from its "total execs:" row of
their interface.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220912. Submission, reviewing and badging method-
ology followed for the evaluation of this artifact can be
found at https://secartifacts.github.io/usenix%20
sec2023/.

Figure 1: The interface of FuzzJIT.

References

[1] Samuel Groß. Fuzzil: Coverage guided fuzzing for
javascript engines. Department of Informatics, Karlsruhe
Institute of Technology, 2018.

[2] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo
Kim. Fuzzing javascript engines with aspect-preserving
mutation. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1629–1642. IEEE, 2020.

[3] Jesse Ruderman. Fuzzing tracemonkey. ht
tps://www.squarefree.com/2008/12/23/fuzzing-
tracemonkey/.

[4] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Su-
perion: Grammar-aware greybox fuzzing. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 724–735. IEEE, 2019.

/path/to/FuzzJIT/script/calculate_syntax_error.py
/path/to/FuzzJIT/script/calculate_syntax_error.py
https://secartifacts.github.io/usenix%20sec2023/
https://secartifacts.github.io/usenix%20sec2023/
https://www.squarefree.com/2008/12/23/fuzzing-tracemonkey/
https://www.squarefree.com/2008/12/23/fuzzing-tracemonkey/
https://www.squarefree.com/2008/12/23/fuzzing-tracemonkey/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

