
USENIX’23 Artifact Appendix:
PROSPECT: Provably Secure Speculation for the Constant-Time Policy

Lesly-Ann Daniel, Marton Bognar, Job Noorman, Sébastien Bardin, Tamara Rezk, Frank Piessens

A Artifact Appendix

A.1 Abstract
The artifact contains the source code of the base Proteus pro-
cessor extended with PROSPECT, alongside the benchmarks
and security tests from our paper. All materials (except for the
tool required for hardware cost measurements) are bundled
into a Docker container and distributed on GitHub.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

None, our artifact is contained in a Docker container, it does
not perform any attacks against the host system and it does
not use user data.

A.2.2 How to access

The artifact is available on GitHub at the following
URL: https://github.com/proteus-core/prospect/
tree/usenix_artifact.

A.2.3 Hardware dependencies

None.

A.2.4 Software dependencies

Our artifact uses the following two tools, which are available
for both Windows and Linux.

• Docker and 7 GB of disk space for the container (https:
//docs.docker.com/engine/install/).

• Xilinx Vivado 2022.2 Standard Edition, requir-
ing approximately 55 GB of disk space (https:
//www.xilinx.com/products/design-tools/
vivado/vivado-ml.html).

A.2.5 Benchmarks

Our evaluation uses modified benchmarks from the Spectre-
Guard paper, which are included in our artifact.

A.3 Set-up

A.3.1 Installation

1. Install the two dependencies (Docker and Vivado). Our
repository contains detailed instructions on setting up
Vivado to minimize the required disk space.

2. Clone our GitHub repository or download the Dock-
erfile from the root directory (https://github.com/
proteus-core/prospect/tree/usenix_artifact).

3. Build the Docker container by following the instructions
in the README.md of the repository (building takes ap-
proximately 2 hours on a mid-range desktop).

A.3.2 Basic Test

The security evaluation can be run from the Docker container
using the following commands:

// first, launch the container
$ docker run -i -t prospect

// inside the container, run the tests
cd /prospect/tests/spectre-tests/
./eval.py /proteus-base/sim/build/base \

/prospect/sim/build/prospect
TEST secret-before-branch
SECURE VARIANT: Secret did not leak!
INSECURE VARIANT: Secret leaked!
[...]

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): PROSPECT prevents the leakage of secrets from well-
annotated programs via Spectre attacks. This is shown by
experiment (E1) described in Section 6.2, which executes
programs vulnerable to Spectre on the baseline and the
extended secure implementation.

(C2): PROSPECT incurs no overhead on precisely annotated
constant-time code. This is shown by experiment (E2),
described in Section 6.2 (Runtime overhead) and Table 1.

https://github.com/proteus-core/prospect/tree/usenix_artifact
https://github.com/proteus-core/prospect/tree/usenix_artifact
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html
https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html
https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html
https://github.com/proteus-core/prospect/tree/usenix_artifact
https://github.com/proteus-core/prospect/tree/usenix_artifact

(C3): PROSPECT only incurs a small overhead in terms of
hardware cost. This is shown by experiment (E3), de-
scribed in Section 6.2 (Hardware cost).

A.4.2 Experiments

(E1): [Security tests, 5 human-minutes]:
How to: The experiment is performed in the container
by launching a script (identical to the basic test A.3.2).
Preparation: Launch the container with docker run
-i -t prospect and navigate to the experiment with
cd /prospect/tests/spectre-tests.
Execution: Run the following command:
./eval.py /proteus-base/sim/build/base \
/prospect/sim/build/prospect
This will run and evaluate the experiments with both
the baseline implementation (first argument) and the
PROSPECT-extended version (second argument).
Results: The results are displayed as text. The security
evaluation should fail with the baseline implementation
and succeed with the extension, validating claim (C1).

(E2): [Runtime overhead, 5 human-minutes + 9 compute-
hours]:
How to: The experiment is performed in the container
by launching a script.
Preparation: Launch the container with docker run
-i -t prospect and navigate to the experiment with
cd /prospect/tests/synthetic-benchmark.
Execution: Run the following command:
./eval.py \
/proteus-base/sim/build/base_nodump \
/prospect/sim/build/prospect_nodump
This will run and evaluate the experiments with both
the baseline implementation (first argument) and the
PROSPECT-extended version (second argument), using
the variants compiled with no waveform dumping to
save disk space.
Results: The results are displayed as text. The gener-
ated table should reflect Table 1 from the paper, validat-
ing claim (C2).

(E3): [Hardware cost, 1 human-hour + 2 compute-hours]:
How to: The experiment is performed in Vivado, using
generated Verilog files from the Docker container.
Preparation: Follow the instructions under the heading
Hardware overhead in README.md to obtain the Verilog
files used for the synthesis and to set up the Vivado
project (Creating the Vivado project).
Execution: Follow the instructions under the heading
Running the Vivado evaluation in README.md to (itera-
tively) obtain the hardware costs of both the baseline and
the PROSPECT-extended hardware design.
Results: The results of the synthesis should be inter-
preted according to the description under the heading
Interpreting the results in the README.md and compared

to the reported numbers in the paper under the heading
Hardware cost (Section 6.2).

A.5 Notes on Reusability
Using the newlib board support package included in this
repository and building on the scripts used for our bench-
marks, it is possible to run other benchmarks on Proteus and
PROSPECT, making additional benchmarking and security
tests possible. The source code of PROSPECT can also be
modified to investigate tradeoffs or to extend the offered se-
curity guarantees.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

