
USENIX’23 Artifact Appendix: Spying through your voice assistants:
Realistic voice command fingerprinting (#462)

Dilawer Ahmed
North Carolina State University

Aafaq Sabir
North Carolina State University

Anupam Das
North Carolina State University

A Artifact Appendix

A.1 Abstract
The artifact, written in Python, contains the code and dataset
for the major part of our work on fingerprinting voice com-
mands across the three most popular voice assistants. The ar-
tifact contains 7 datasets that we used along with code for our
data collection process which we used to collect the datasets
and the code we used to process the data and get the results
that we presented in our paper.

A.2 Description & Requirements
A.2.1 Environment setup

A.2.2 Security, privacy, and ethical concerns

There are no major security or privacy considerations except
that you will be collecting network traffic from the routers
which can include traffic from other devices connected to this
network. You would need to be careful about who has access
to this dataset

A.2.3 How to access

The code can be accessed from https://github.
com/dilawer11/va-fingerprinting/tree/
0dd1ec3a65e843e366e81ffd29721593bc8043b1.
The datasets can be downloaded from https:
//privacy-datahub.csc.ncsu.edu/publication/
ahmed-usenix-2023/. An archived version through Zen-
odo is available at https://doi.org/10.5281/zenodo.
8037394

A.2.4 Hardware dependencies

For analysis following specifications are minimum:

• CPU: (x86-64) 8 cores

• RAM: 16 GB

• OS: Debian Linux (Ubuntu recommended)

For data collection following specifications are recom-
mended:

• CPU: (x86-64) 4 cores

• RAM: 8 GB

• OS: Debian Linux (Ubuntu recommended)

• Speaker: Any Stereo PC Speakers

• Routers: 2x OpenWRT (ssh-capable) Linux routers

• Voice Assistant: Alexa, Google Assistant or Siri sup-
ported smart speaker

A.2.5 Software dependencies

You can either use the Docker image (provided
at https://privacy-datahub.csc.ncsu.edu/
publication/ahmed-usenix-2023/ or setup your
own environment (using either the Dockerfile or manually in-
stalling all dependencies). The github repository contains the
more detailed instructions on how to setup the environment
manually and on Docker. The software dependencies which
can be installed using apt-get are:

• python3.9 (analysis, data collection)

• python3-pip (analysis, data collection)

• tshark (analysis)

• tcpdump (router, data collection)

• dumpcap (data collection)

The following python packages also need to be
installed for analysis: autogluon.tabular[fastai,
xgboost, ray, lightgbm], pandas, scikit-learn,
matplotlib, tqdm, seaborn, datetime, plotly,
jupyterlab, python-dotenv. For data collec-
tion the following packages need to be installed:
python-dotenv, google-cloud-texttospeech, gtts,
tqdm, selenium.

https://github.com/dilawer11/va-fingerprinting/tree/0dd1ec3a65e843e366e81ffd29721593bc8043b1
https://github.com/dilawer11/va-fingerprinting/tree/0dd1ec3a65e843e366e81ffd29721593bc8043b1
https://github.com/dilawer11/va-fingerprinting/tree/0dd1ec3a65e843e366e81ffd29721593bc8043b1
https://privacy-datahub.csc.ncsu.edu/publication/ahmed-usenix-2023/
https://privacy-datahub.csc.ncsu.edu/publication/ahmed-usenix-2023/
https://privacy-datahub.csc.ncsu.edu/publication/ahmed-usenix-2023/
https://doi.org/10.5281/zenodo.8037394
https://doi.org/10.5281/zenodo.8037394
https://privacy-datahub.csc.ncsu.edu/publication/ahmed-usenix-2023/
https://privacy-datahub.csc.ncsu.edu/publication/ahmed-usenix-2023/


A.2.6 Benchmarks

The following datasets are available at the URLs provided
above:

• simple_50_alexa

• simple_50_siri

• simple_50_google

• simple_100_alexa

• skills_100_alexa

• stream_15_alexa

• mix_100_alexa

The results presented in Tables 2 and 3 of our paper are
mostly computed on these datasets and can be used as bench-
marks for the setup.

A.3 Set-up
The following subsections describe how to complete the setup

A.3.1 Docker Setup

To set up via the provided Docker container you need to
download it from the given link. After you have down-
loaded it use the following command to load the docker
container image into your Docker system. Replace the
path/to/dockerimage with the absolute path of the down-
loaded docker image
$ docker load < path/to/dockerimage

After you have loaded the Docker image you can then
create and start a container by using the following command
from inside the root repository directory
$ docker run -it
-v $(’pwd’):/va-fingerprinting
vafingerprint

The command above starts the container and mounts the
repository directory (including source and data) to the con-
tainer to any changes are reflected and persistent in local
storage.

A.3.2 Manual Installation

To manually install the software dependencies use the follow-
ing commands:
$ apt-get update && apt-get install
packagenames

Replace the packagenames with the packages that need
to be installed based on the type of setup i.e. analysis, data
collection. The analysis packages need to be installed on the

machine where the raw data is input (e.g our datasets) and
results need to be computed. The data collection packages
need to be installed on the machine where you want to dump
the data and want to run the speaker control script for data
collection. The router packages need to be installed on the
router which you want to capture traffic from. In this appendix,
we are primarily focused on the analysis part.

To install the Python packages use the following com-
mands:

$ pip3 install -r path/to/requirements.txt
Use the requirements file from the setup directory in
the GitHub repo. The requirements_analysis.txt
file contains the pip dependencies for the analysis and
the requirements_collection.txt contains the pip
dependencies for data collection.

To download and setup the datasets you can download
them from the URL mentioned above. Then unzip them in the
data directory of the cloned GitHub repostory. The detailed
instructions can be found in the data/README.md file.

A.3.3 Basic Test

After the setup is complete and you have set up the dependen-
cies and the test dataset. Use the following command from
the root of the cloned GitHub repository to run a basic test
that dependencies are properly installed (for the analysis).

$ sh src/scripts/test.sh

If the script runs without any errors and outputs the results
then everything should work fine.

A.4 Evaluation workflow

We provide the details and steps necessary to recompute the
results of activity detection and invocation detection which
are a major portion of our work in realistic voice activity
fingerprinting.

A.4.1 Major Claims

(C1): We achieved more than 98% accuracy while finger-
printing invocations on voice assistants. This is described
in Section 4.2 of our paper and in Table 2.

(C2): We improved the state-of-the-art accuracy in voice
command fingerprinting on a variety of datasets we col-
lected. The results are presented in Section 5.5-5.7 and
in Table 3 of our paper

A.4.2 Experiments

To re-compute the results for the datasets make sure you
have already set up the datasets as described previously and
conducted a simple test.



A common step to both experiments is to process the
PCAPs to remove the unnecessary information and convert
to CSV format for easier processing with Python and Pandas.
To achieve this you can use the script provided as such

$ python3 src/scripts/PCAP2CSV.py -i
path/to/data/dataset

(E1): Invocation Detection [10 human-minutes + 3
compute-hour]: This experiment seeks to evaluate the
invocation detection performance on the datasets. The
results, once computed, should look similar to Table 2
of our paper
How to: Running this experiment is fairly simple, how-
ever, it might take long to actually compute the results.
We will initially need to convert the PCAP files to CSV
and then create sliding windows based on invoke records.
Then we will extract features from the windows and fi-
nally train the model. As a final step, we can aggregate
results across datasets and create a table
Preparation: After you have completed the
setup mentioned above. You can then use the
src/scripts/PCAP2CSV.py script to convert PCAP
files to CSV. If you have already converted (for another
experiment) you should skip this step.
Execution: After the CSV files are created you would
then, for each dataset, need to create windows, extract
features and train models. We have provided a default
short hand argument to the scripts which can automat-
ically do this. For each dataset you can compute the
results using the following command
$ python3 src/scripts/InvocationDetection.py
auto-train -i path/to/data/dataset

For further options and information you can either use
the -h option or see the GitHub README file.
Results: To create the table with all datasets you can
run the following script with the options as follows
$ python3 src/scripts/PostProcessing.py
id-table -d path/to/data

This will display a table with result metrics across differ-
ent models and datasets similar to Table 2 of the paper

(E2): Activity Detection [10 human-minutes + 3 compute-
hour]: This experiment is to evaluate the performance of
our voice activity fingerprinting method on the datasets
we collected. This experiment will reproduce the results
in Table 3 of our paper
How to: Similar to last experiment we will need the
CSV files (converted from PCAPs) from which windows
are created based on invoke records. We then extract
features and train the AutoGluon model.
Preparation: You can skip this step if the PCAPs for
the dataset are already converted to CSV. Otherwise, run

the following script to convert PCAP to CSVs.
$ python3 src/scripts/PCAP2CSV.py -i
path/to/data/dataset

Execution: To create windows, extract features and
train the AutoGluon model you can use the following
command.
$ python3 src/scripts/ActivityDetection.py
auto-train -i path/to/data/dataset

Alternatively, instead of the auto-train option you can
pass the windows, features, train arguments to the
script (in this order) to complete this experient.
More information on this script is provided in the GitHub
README file
Results: To create the table with all datasets you can
run the following script with the options as follows
$ python3 src/scripts/PostProcessing.py
ad-table -d path/to/data

This will display a table with result metrics across dif-
ferent datasets similar to Table 3 of the paper

A.5 Notes on Reusability
Our artifact was designed to be a prototype and hence is not
nearly optimized enough for production. To help with reusing
and adding additional functionality we have tried to make the
code easier to read and functionality separated into modules.
For the extension of a particular module, only that module can
be extended while keeping the rest of the code base largely
untouched.

The src/iotpackage/Utils.py file contains some util-
ity functions that can help with extending the functionality
and also help future researchers by optimizing some work-
flows. For example, the DataFrame2LatexTable can convert
a Pandas dataframe into a latex table format to save time.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Environment setup
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Docker Setup
	Manual Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


