
Exploring the Unknown DTLS Universe:
Analysis of the DTLS Server Ecosystem on the Internet

Nurullah Erinola1, Marcel Maehren1, Robert Merget2, Juraj Somorovsky3, and Jörg Schwenk1

1Ruhr University Bochum
2Technology Innovation Institute

3Paderborn University

A Artifact Appendix

A.1 Abstract
TLS-Scanner is an open-source tool to assist pentesters and se-
curity researchers in evaluating TLS server implementations.
It automatically scans a TLS server and provides a report
of supported features like protocol versions, cipher suites,
extensions, and potential security issues.

In our work, we extended TLS-Scanner with support for
DTLS and implemented additional tests specifically designed
to evaluate DTLS-specific features. Subsequently, we evalu-
ated twelve open-source DTLS server implementations and
uncovered eleven security vulnerabilities. We then proceeded
to scan publicly available DTLS servers to gain detailed in-
sights into the publicly accessible DTLS server landscape.

Artifact users can reproduce the results of our lab evaluation
by running TLS-Scanner against the respective DTLS server
implementations.

A.2 Description & Requirements
Upon completion of the scan, TLS-Scanner provides a com-
prehensive report containing detailed information regarding
the server’s configuration and its security-relevant properties.
We provide the source code of the extended TLS-Scanner and
Docker files of OpenSSL and Mbed TLS as artifacts, enabling
the testing of TLS-Scanner.

A.2.1 Security, Privacy, and Ethical Concerns

We are not aware of any exploitable issues in TLS-Scanner.
TLS-Scanner only establishes multiple DTLS connections
to the server under test. However, depending on the number
of threads, it is possible to overwhelm the server. Therefore,
by default, the scan is performed with one thread. Note that
such a scan will inevitably reveal your IP address to the tested
server.

TLS-Scanner can also be used to scan servers owned by
other people. Depending on your local jurisdiction, it may be

illegal for you to do so. Additionally, conducting scans on
public servers should follow the best practices for Internet-
wide scanning setup by Durumeric et al. [1].

A.2.2 How To Access

Our artifact can be found on GitHub
at https://github.com/tls-attacker/
Exploring-the-Unknown-DTLS-Universe/tree/
563b9ca12920eed26b00f518fe7465b2b833024e. The
repository includes the source code of the extended TLS-
Scanner and example Docker files which build open-source
DTLS server implementations (OpenSSL and Mbed TLS).

A.2.3 Hardware Dependencies

None.

A.2.4 Software Dependencies

TLS-Scanner is written in Java. This requires Maven and
Java 11 to be installed. To run the example servers in the
docker containers, Docker is required. We tested this artifact
on Kubuntu 22.04, but any Linux system should work. TLS-
Scanner should also run on Windows (but the docker examples
will not).

A.2.5 Benchmarks

None.

A.3 Set-up
A.3.1 Installation

Downloading the Artifact. Clone the GitHub repository
using git:

https://github.com/tls-attacker/\
Exploring-the-Unknown-DTLS-Universe/tree/\
563b9ca12920eed26b00f518fe7465b2b833024e

https://github.com/tls-attacker/Exploring-the-Unknown-DTLS-Universe/tree/563b9ca12920eed26b00f518fe7465b2b833024e
https://github.com/tls-attacker/Exploring-the-Unknown-DTLS-Universe/tree/563b9ca12920eed26b00f518fe7465b2b833024e
https://github.com/tls-attacker/Exploring-the-Unknown-DTLS-Universe/tree/563b9ca12920eed26b00f518fe7465b2b833024e


Installing Java and Maven. Install Java 11 and Maven
using apt:

sudo apt install openjdk-11-jdk
sudo apt install maven

To verify if the dependencies are installed and set up correctly,
run the following commands:

java -version
mvn -version

If everything works correctly, both commands should dis-
play their respective versions. Additionally, it is important to
ensure that the correct version of Java is specified for Maven.

Installing Docker. Install Docker by following the instruc-
tions at https://docs.docker.com/engine/install/.

Setting up TLS-Scanner.

a) Using the provided Dockerfile:

1. Navigate to tls-scanner/

2. Run

docker build --tag tls-scanner --file \
dockerfile-tls-scanner .

3. Run docker images

If everything works correctly, the last command should
print the names of all available docker images on your
system. The output should contain tls-scanner.

b) Building TLS-Scanner yourself:

1. Navigate to tls-scanner/TLS-Attacker/

2. Execute mvn clean install

3. Navigate to tls-scanner/TLS-Scanner/

4. Execute mvn clean package

If everything compiles correctly, the apps\ folder should
now contain the TLS-Server-Scanner.jar file.

Building the Server Implementations.

1. Navigate to libraries/

2. Execute setup.sh

3. Run docker images

If everything works correctly, the last command should again
print the names of all available docker images on your system.
The output should contain the names of the server implemen-
tations (e.g., openssl-dtls-server or mbedtls-dtls-server).

A.3.2 Basic Test

Testing TLS-Scanner. To verify that the TLS-Scanner can
be executed correctly, run the following command:

docker run --rm --network="host" --name \
tls-scanner tls-scanner -help

If everything works correctly this should print the parameter
list of TLS-Scanner with usage instructions.

Testing the Server Implementations. To verify that the
docker images can be used, run the following command:

docker run --rm --network="host" --name \
mbedtls-dtls-server mbedtls-dtls-server \
server_port=4433 dtls=1

If everything works correctly this should start the example
server of Mbed TLS.

A.4 Evaluation workflow
Running TLS-Scanner on a DTLS server implementation is
straightforward. Typically, the DTLS server is started, then
TLS-Scanner is started. TLS-Scanner will then perform the
scan without interaction from the user. After completing the
scan, TLS-Scanner will output the results which the user can
analyze.

A.4.1 Major Claims

We claim to be able to evaluate various DTLS-specific
features of a given server, including potential DoS vulnera-
bilities. Specifically, we claim to evaluate the properties of
twelve open-source DTLS server implementations. In the
following, we exemplary describe our claims for OpenSSL
and Mbed TLS:

(C1): OpenSSL issues 20 byte long cookies and deviates
from the recommended cookie computation.

(C2): OpenSSL does not perform a cookie exchange upon
renegotiation.

(C3): OpenSSL allows users to implement no cookie
exchange, a stateful cookie exchange, or a stateless
cookie exchange. The example server uses the stateful
cookie exchange by default, but stateless mode can
be requested through command line parameters. To
mitigate DoS attacks, the stateless mode should be used
when deploying OpenSSL in production.

(C4): Mbed TLS issues 32 byte long cookies and deviates
from the recommended cookie computation.

(C5): Mbed TLS supports the fragmentation of messages
after the cookie exchange is successfully completed.

https://docs.docker.com/engine/install/


The experiment (E1) will demonstrate (C1)-(C3) while (C4)-
(C5) are demonstrated by the experiment (E2). The results of
the two experiments are summarized in our paper in Table 1
with a detailed explanation in Section 5.

A.4.2 Experiments

Since TLS-Scanner is designed to scan only a single server,
we define one scan per experiment.

(E1 - OpenSSL) (5 human-minutes + 10 compute-minutes)
In this experiment, the OpenSSL example server is scanned
with TLS-Scanner. TLS-Scanner will then output a report.

1. Start the OpenSSL server

docker run --rm -v [absolute path to \
libraries/certs/]:/certs/ \
--network="host" --name \
openssl-dtls-server openssl-dtls-server \
-key /certs/private_key.pem -cert \
/certs/certificate.pem -accept 4433 -dtls

2. Start the evaluation with TLS-Scanner

docker run --rm --network="host" --name \
tls-scanner tls-scanner -connect \
localhost:4433 -dtls -timeout 100

TLS-Scanner will now perform a series of DTLS handshakes.
After that, the report should be visible.

Results.
(C1): The report should contain a section DTLS Hello
Verify Request. It summarizes the behavior the server
showed against the implemented cookie exchange tests. There
you can see which client parameters influence the cookie com-
putation. For OpenSSL, it should contain:

DTLS Hello Verify Request

HVR Retransmissions : false
Cookie length : 20
Checks cookie : true
Cookie is influenced by
-ip : not tested yet
-port : true
-version : false
-random : false
-session id : false
-cipher suites : false
-compressions : false

To confirm (C1), the Cookie length field should have the
value 20. In addition, the -version, -random, -session
id, -cipher suites, and -compressions fields should
have false. Please note that evaluating if the IP influences
the cookie computation requires a proxy running on a host

with a different IP.

(C2): The report should contain a section Renegotioation.
It summarizes whether the server supports renegotiation and
whether cookie exchange is performed there. For OpenSSL,
it should contain:

Renegotioation

Secure (Extension) : true
Secure (CipherSuite) : true
Insecure : false
DTLS cookie exchange in renegotiation : false

To confirm (C2), the DTLS cookie exchange in
renegotiation field should have false.

(C3): The report should contain a section DTLS
Fragmentation. It summarizes the behavior the server
showed against the implemented fragmentation tests. For
OpenSSL, it should contain:

DTLS Fragmentation

Supports fragmentation : true
Supports fragmentation with individual transport packets :

↪→ true

To confirm (C3), both fields should have true.

(E2 - Mbed TLS) (5 human-minutes + 10 compute-
minutes) In this experiment, the Mbed TLS example server is
scanned with TLS-Scanner. TLS-Scanner will then output a
report.

1. Start the Mbed TLS server

docker run --rm --network="host" --name \
mbedtls-dtls-server mbedtls-dtls-server \
server_port=4433 dtls=1

2. Start the evaluation with TLS-Scanner

docker run --rm --network="host" --name \
tls-scanner tls-scanner -connect \
localhost:4433 -dtls -timeout 100

TLS-Scanner will now perform a series of DTLS handshakes.
After that, the report should be visible.

Results.
(C4): Similar to (C1). For Mbed TLS, the DTLS Hello
Verify Request section should contain:

DTLS Hello Verify Request

HVR Retransmissions : false
Cookie length : 32
Checks cookie : true
Cookie is influenced by
-ip : not tested yet



-port : false
-version : cannot be tested
-random : false
-session id : false
-cipher suites : false
-compressions : false

To confirm (C4), the Cookie length field should have the
value 32. In addition, the -port, -random, -session id,
-cipher suites, and -compressions fields should have
false. Please note that evaluating if the version influences
the cookie cannot be executed for Mbed TLS because it
supports only one protocol version (DTLS 1.2).

(C5): Similar to (C3). For Mbed TLS, the DTLS
Fragmentation section should contain:

DTLS Fragmentation

Supports fragmentation : partially
-After cookie exchange
Supports fragmentation with individual transport packets :

↪→ partially
-After cookie exchange

To confirm (C5), both fields should have partially.

A.5 Notes on Reusability
Our extensions to TLS-Scanner have been merged in the
project and released with v5.2.5. It can be found on GitHub
at https://github.com/tls-attacker/TLS-Scanner/
releases/tag/v5.2.5. In addition, our extensions to
TLS-Attacker which is used by TLS-Scanner have been
merged in the project and are contained in the latest release
v5.2.1. It can be found on GitHub at https://github.com/
tls-attacker/TLS-Attacker/releases/tag/v5.2.1.

To perform large-scale scans with TLS-Scanner, TLS-
Crawler can be used. It utilizes multiple TLS-Scanner in-
stances to scan a large number of servers in parallel and write
the results to a database. The latest release v1.0.1 can be
found on GitHub at https://github.com/tls-attacker/
TLS-Crawler/releases/tag/v1.0.1.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

References

[1] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast Internet-wide scanning and its security appli-
cations. In 22nd USENIX Security Symposium, 2013.

https://github.com/tls-attacker/TLS-Scanner/releases/tag/v5.2.5
https://github.com/tls-attacker/TLS-Scanner/releases/tag/v5.2.5
https://github.com/tls-attacker/TLS-Attacker/releases/tag/v5.2.1
https://github.com/tls-attacker/TLS-Attacker/releases/tag/v5.2.1
https://github.com/tls-attacker/TLS-Crawler/releases/tag/v1.0.1
https://github.com/tls-attacker/TLS-Crawler/releases/tag/v1.0.1
https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, Privacy, and Ethical Concerns
	How To Access
	Hardware Dependencies
	Software Dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


