
USENIX’23 Artifact Appendix: No more Reviewer #2: Subverting
Automatic Paper-Reviewer Assignment using Adversarial Learning

Thorsten Eisenhofer*†, Erwin Quiring∗†‡, Jonas Möller§, Doreen Riepel†,
Thorsten Holz¶, Konrad Rieck§

†Ruhr University Bochum
‡International Computer Science Institute (ICSI) Berkeley

§Technische Universität Berlin
¶CISPA Helmholtz Center for Information Security

A Artifact Appendix

A.1 Abstract

The number of papers submitted to academic conferences is
steadily rising in many scientific disciplines. To handle this
growth, systems for automatic paper-reviewer assignments
are increasingly used during the reviewing process. These
systems use statistical topic models to characterize the content
of submissions and automate the assignment to reviewers. In
this paper, we show that this automation can be manipulated
using adversarial learning. We propose an attack that adapts a
given paper so that it misleads the assignment and selects its
own reviewers. Our attack is based on a novel optimization
strategy that alternates between the feature space and problem
space to realize unobtrusive changes to the paper. To evaluate
the feasibility of our attack, we simulate the paper-reviewer
assignment of an actual security conference (IEEE S&P) with
165 reviewers on the program committee. Our results show
that we can successfully select and remove reviewers without
access to the assignment system. Moreover, we demonstrate
that the manipulated papers remain plausible and are often
indistinguishable from benign submissions.

A.2 Description & Requirements

A.2.1 Security, privacy, and ethical concerns

There are no expected risks or others ethical concerns when
executing the artifact.

A.2.2 How to access

The code for the artifact is available on GitHub
github.com/RUB-SysSec/adversarial-papers with commit
hash 01fc915612c7ca72481b50ab7700dde1e0fa6188.

*Shared first authorship

The main experiments require the following files

evaluation
|-- models
| |-- overlap_0.70
| |-- victim
|-- problemspace
| |-- bibsources
| |-- llms
| |-- synonyms
|-- submissions
| |-- oakland_22
|-- targets

|-- budget-vs-transformer.json
|-- featurespace-search.json
|-- surrogates

|-- surrogate_targets_4.json

Targets files and bib sources are included in the repository. Pre-
trained models and required target submissions are provided
at blinded. Due to licensing issues, we cannot make these
submissions publicly available. We do, however, publish all
of our crawling scripts, dummy examples, and pre-trained
models. Refer to the repository for more information.

A.2.3 Hardware dependencies

The evaluation does not require special hardware. All exper-
iments can be performed on a “regular” server using only
CPUs. We performed the experiments on a server with 256
GB RAM and two Intel Xeon Gold 5320 CPUs.

A.2.4 Software dependencies

We provide a docker container that setups the required envi-
ronment and which can be used to run the experiments.

A.2.5 Benchmarks

There are no benchmarks required to evaluate this artifact.

https://github.com/RUB-SysSec/adversarial-papers

A.3 Set-up
A.3.1 Installation

For ease of use, we include a Dockerfile with all necessary
tools to reproduce the results from the paper. It can be build
via

git clone
https://github.com/RUB-SysSec/adversarial-papers.git
adversarial-papers

↪→

↪→

cd adversarial-papers; ./docker.sh build

After building the container, it is possible to spawn a shell
with

./docker.sh shell

All containers get automatically deleted after the shell exits
(cf. the --rm flag from docker run). To make the evaluation
results both easily accessible and persistent, we map subdi-
rectories of the evaluation folder evaluation from the host
inside the container. To setup all paths correctly, it is therefore
necessary to invoke the docker.sh in the base directory of
the project.

A.3.2 Basic Test

After building the docker container, you can test your setup
by running the following command

./docker.sh run "python3
/root/adversarial-papers/src/attack.py --targets_file
/root/adversarial-papers/evaluation/targets/test.json
--format_level --workers 1 --trial_name basic-test"

↪→

↪→

↪→

This will start the attack for the target described in
evaluation/targets/test.json. If everything is work-
ing properly, the attack should run for one iteration
and immediately return successful. Results are stored in
evaluation/trials/basic-test.

The main entry point for the attack is in the src/attack.py
file. There are options provided to configure almost every
aspect of the attack grouped into general, feature-space and
problem-space specific configurations. See the documentation
in the repository for further details.

When setting the number of workers to 1, the attack produces
verbose output for debugging. For larger numbers, this output
is not send to stdout but stored only as a log file in the
respective result directory.

A.4 Evaluation workflow
The full evaluation consists of ten experiments, which requires
about 6.5 CPU years to fully execute. In the following, we
therefore describe only the subset of experiments we think are
necessary to reproduce the major claims in the paper. Refer to
the documentation in the repository for a complete description

of all ten experiments include the hyperparameter search, and
how to train your own models.

Each experiment is configured with a file describing all con-
sidered targets (--targets_file). These files are located at
evaluation/targets. The scripts to re-generate these files
are located at scripts/targets. Each target is optimized
to run on a single-core and the experiments are therefore
highly amneable for parallelization across CPU cores and
machines. Note, that depending on the experiments more or
less computer memory might be required (e.g., the black-box
experiments require more memory per instance to store the
surrogate models). Depending on the machine, this might
limit the number of parallel executions. To get a good esti-
mate, we will additionally report an approximated (!) maximal
memory per instance (e.g., with 100 workers the experiment
requires 100× the amount of this value).

Finally, for almost any experiment, it is possible to contin-
uously check the current results which might allow to stop
experiments early if the numbers have sufficiently converged
(see the expected results for each experiment). Sending the
interrupt signal (w/ CTRL+C) should usually stop all pro-
cesses, but sometimes the scripts need a bit more persuasion.
In this case, stopping the container proved to be an effec-
tive strategy (i.e., docker kill <container-id> with the
container id either being autocomplete with pressing TAB or
using docker ps).

A.4.1 Major Claims

In the paper, we investigate three major claims:

(C1): First, we show that the proposed attack is effective in
crafting adversarial papers in a white-box setting. This
is investigated with experiment (E1) described in the
feature-space search paragraph in Section 4.1. The re-
sults of the experiment are reported inline in the text as
well as Table 2.

(C2): Second, we demonstrate that the attack extends to dif-
ferent classes of transformations. This is described in
the all transformations paragraph in Section 4.1 and is
part of experiment (E2). The results of the experiment
are reported in Figure 4.

(C3): Finally, we analyze if the attack remains viable in a
black-box scenario as described in Section 4.2. We con-
sider this in experiment (E3) and simulate the attack with
varying numbers of surrogate models.

A.4.2 Experiments

(E1): Feature-space search [800 CPU hours + 31GB disk]:
We start our evaluation by examining the feature-space
search of our attack. For this experiment, we consider
format-level transformations that can realize arbitrary
changes. Other transformations are evaluated as part of
experiment (E2).

The experiment can be executed with:
WORKERS=100
./docker.sh run "python3

/root/adversarial-papers/src/attack.py
--targets_file
/root/adversarial-papers/evaluation/

↪→

↪→

↪→

targets/featurespace-search.json --reviewer_window 6
--reviewer_offset 2 --no_successors 256
--beam_width 4 --step 64
--problem_space_block_features
--feature_problem_switch 8 --format_level
--workers ${WORKERS} --trial_name
featurespace-search"

↪→

↪→

↪→

↪→

↪→

↪→

Per worker, roughly 850MB of memory are
expected. Adjust the number of parallel exe-
cutions accordingly. Raw results are stored in
evaluation/trials/featurespace-search and can
be analyzed with
./docker.sh run "python3 /root/adversarial-papers/
evaluation/scripts/00_featurespace_search.py"

Expected output (cf. Table 2 and inline in text)
FEATURE-SPACE SEARCH
[+] Overall success rate

-> 99.67%

[+] Overall run-time
-> median: 7m 12s

[+] Overall L1
-> min : 9
-> max : 22621

[+] Ratio between modifications and original content
-> selection: 9.42%
-> rejection: 13.37%

[+] Modifications per objective
Selection Rejection Substitution

L1 704 1032 2059
Linf 17 43 62

(E2): All transformations [1200 CPU hours + 32GB disk]:
In experiment (E1), we have focused on format-level
transformations to realize manipulations. These trans-
formations exploit intrinsics of the submission format,
which effectively allows us to make arbitrary changes
to a PDF file. In experiment (E2) we consider different
classes of transformations as introduced in Section 3.2.

The experiment can be executed with:
WORKERS=100
./docker.sh run "python3

/root/adversarial-papers/src/attack.py
--targets_file
/root/adversarial-papers/evaluation/

↪→

↪→

↪→

targets/budget-vs-transformer.json
--problem_space_block_features --reviewer_window 6
--reviewer_offset 2 --no_successors 256
--beam_width 4 --step 64 --workers ${WORKERS}
--trial_name budget-vs-transformer-1"

↪→

↪→

↪→

↪→

Per worker, roughly 2300MB of memory are
expected. Adjust the number of parallel exe-

cutions accordingly. Raw results are stored in
evaluation/trials/budget-vs-transformer and
can be analyzed with
./docker.sh run "python3 /root/adversarial-papers/
evaluation/scripts/04_all_transformations.py"

Expected output (cf. left part of Figure 4)
[+] Switches

found no trials

[+] Budget
0.25 0.50 1.00 2.00 4.00

Text : 22.00 28.00 40.00 52.00 68.00
+ Encoding: 24.00 31.00 45.00 53.00 69.00
+ Format : 100.00 100.00 100.00 100.00 99.00

[+] Saved plot @
evaluation/plots/all-transformations.pdf↪→

Note that the full plot in Figure 4 aggregates eight of
such runs.

(E3): Surrogates [1000 CPU hours + 46GB disk]: In practice,
an attacker typically does not have unrestricted access to
the target system. We therefore also assume a black-box
scenario and consider an adversary with only limited
knowledge.

The experiment can be executed with:
WORKERS=50
./docker.sh run "python3

/root/adversarial-papers/src/attack.py
--targets_file
/root/adversarial-papers/evaluation/targets/

↪→

↪→

↪→

surrogates/surrogate_targets_4.json --reviewer_window
2 --delta -0.16 --reviewer_offset 1
--no_successors 128 --beam_width 4 --step 256
--problem_space_block_features
--feature_problem_switch 8 --format_level
--workers ${WORKERS} --trial_name surrogates-4"

↪→

↪→

↪→

↪→

↪→

Per worker, roughly 2000MB of memory are
expected. Adjust the number of parallel exe-
cutions accordingly. Raw results are stored in
evaluation/trials/surrogates-4 and can be
analyzed with
./docker.sh run "python3 /root/adversarial-papers/
evaluation/scripts/05_surrogates.py"

Expected output (cf. Figure 5 with ensemble size 4)
[+] Saved plot @ evaluation/plots/surrogates.pdf

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

