
USENIX’23 Artifact Appendix: ARGUS: A Framework for Staged Static
Taint Analysis of GitHub Workflows and Actions

Siddharth Muralee‡*, Igibek Koishybayev†*, Aleksandr Nahapetyan†, Greg Tystahl†,
Brad Reaves†, Antonio Bianchi‡, William Enck†, Alexandros Kapravelos†, Aravind Machiry‡

‡ Purdue University, {smuralee, antoniob, amachiry}@purdue.edu
† North Carolina State University, {ikoishy, anahape, gttystah, bgreaves, whenck, akaprav}@ncsu.edu

A Artifact Appendix

A.1 Abstract
ARGUS’s artifact contains the source code and corresponding
infrastructure to run our taint tracking tool. This is a modified
version of the tool presented in the paper, which can generate
all the taint summaries mentioned in the paper on the fly
(rather than generating offline summaries). Also provides the
datasets required to validate the tool and the claims made in
the paper.

This document describes how to set-up our prototype, gives
an overview of the requirements to replicate some of the ex-
periments conducted in our evaluation, along with instructions
to run them.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

There exist no risks associated with executing ARGUS on
any system. ARGUS is encapsulated as a Docker image, in-
corporating all the requisite dependencies necessary for con-
ducting evaluations. It fetches files into Docker’s isolated
filesystem, thereby obviating any interaction with the host
system’s filesystem.

ARGUS doesn’t directly interact with the repository apart
from cloning it, so it is safe to run on any GitHub repository.
However, a few of the vulnerabilities described in this docu-
ment might still not be fixed, it is recommended to test these
vulnerabilities using private forks of these repositories, so that
an exploitable fork is not public.

A.2.2 How to access

Given that our paper is presently subject to an embargo, we
will be provisionally providing all relevant code and datasets
in the form of encrypted zip archives. These archives can
be accessed at https://github.com/purs3lab/Argus_
artifacts, under the commit hash c8a2086.

*Both authors made equal contributions to this work

The decryption password for the ARGUS.zip archive
is d7e21ecf50fd0116a76957f285fda57f6426423af446b.
The VWBench.zip archive, however, is unencrypted.

A.2.3 Hardware dependencies

None

A.2.4 Software dependencies

The ARGUS is encapsulated as a Linux Docker image. Any
system equipped with the capability to execute Linux Docker
containers should suffice for the deployment of the tool for
evaluation purposes.

The tool also can be executed outside docker, however,
requires a Python version 3.8 and CodeQL installed. All the
required Python packages can be installed via the Poetry
Python package manager.

A.2.5 Benchmarks

The ARGUS was evaluated using two benchmarks:

• VWbench: This comprises a collection of vulnerable
workflows, curated from security advisories previously
reported and published. The VWbench encompasses 24
workflows, stored in the vwbench.zip archive, specifi-
cally within the .github/workflows directory.

• Realworld Dataset: This represents a collection of 2.8
million workflows, upon which our tool was assessed. A
selection of representative workflows was chosen from
this set to serve as sample PoCs, and added in the paper
as listings.

A.3 Set-up
A.3.1 Installation

Given that the tool is packaged as a Docker container, the in-
stallation procedure merely entails the setup and construction
of the container.

1

https://github.com/purs3lab/Argus_artifacts
https://github.com/purs3lab/Argus_artifacts


1. Install Docker and Docker Compose via the command:
apt-get -y install docker.io docker-compose

2. Extract the contents of ARGUS.zip, which should contain
a directory named Argus

3. Navigate to the newly created folder and initiate the build
process with the command: docker-compose build

A successful build, devoid of any complications, signifies
that the tool is prepared for utilization.

A.3.2 Basic Test

To validate the proper functioning of the tool, we have retained
the SARIF files corresponding to the actions/checkout action
within the directory titled saved_results, nested inside the
Argus folder.

These results can be regenerated by executing the following
commands: ./run_check.sh

The resultant SARIF file should be located in the results
directory. The SARIF files should be consistent with
SARIF file starting with actions#checkout inside the
saved_results folder.

A.4 Evaluation workflow
A.4.1 Major Claims

(C1): ARGUS possesses the capability to identify all vulner-
able workflows within the VWBench benchmark. This
claim is substantiated by the results of Experiment E1.

(C2): ARGUS has been deployed to discover new bugs, a
claim which is corroborated by Experiment E2.

A.4.2 Experiments

(E1): [VWBench] [30 human-minutes + 2 compute-hours +
5GB disk]: This experiment reproduces the VWBench
benchmark for the vulnerabilities identified by ARGUS.
Procedure: Ensure that ARGUS generates alerts for
each workflow in VWBench. The results will be located
in the results directory.
Preparation: Extract the contents of VWBench.zip and
upload it into a private GitHub repository. The work-
flows should be situated in the .github/workflows/
directory of the repository. Generate a GitHub token to
facilitate the tool’s cloning of the GitHub repository. (We
neither retain nor collect the GitHub tokens.)
Execution: Deploy the Docker con-
tainer using the following command:
docker-compose run argus -mode repo -url
<username>:<GHToken>@<url_to_git_repo>
Results: The execution results should be found in the
results directory. Each workflow should have an ac-
companying SARIF file containing the results. The

SARIF format resembles JSON and can be viewed using
online viewers such as as well as the SARIF viewer
plugin on Visual Studio Code.

(E2): [RWDataset] [2 human-hour + 2 compute-hours +
5GB disk]: This experiment reproduces several of the
0day vulnerabilities found by ARGUS, specifically the
ones listed in the paper.
How to: The list of vulnerable workflows and actions
presented in the paper, is added to the file rwvulns.md
in the Argus folder. The experiment requires running
argus on these repositories and verifying that ARGUS
can identify these vulnerabilities.
Preparation: None
Execution: To test the workflows run :
./run_test_docker.sh
Results: The SARIF file present in the results direc-
tory can be used to identify the security vulnerabilities
in these workflows and actions.

A.5 Notes on Reusability
For the large-scale evaluation delineated in our paper, we
cached all reports corresponding to each version of each
JavaScript and Composite action, as well as reusable work-
flows, within a MongoDB database. This procedure can be
readily replicated by implementing minor modifications to
the infrastructure responsible for report generation within our
codebase, specifically within argus_components/report.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

2

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


