ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

4

ARTIFACT
EVALUATED
susenix

»

AVAILABLE REPRODUCED

USENIX’23 Artifact Appendix
POLIGRAPH: Automated Privacy Policy Analysis
using Knowledge Graphs

Hao Cui, Rahmadi Trimananda, Athina Markopoulou, Scott Jordan

University of California, Irvine

A Artifact Appendix
A.1 Abstract

In our main paper, we proposed POLIGRAPH, a type of knowl-
edge graph, for the analysis of data collection statements in
a privacy policy. We developed POLIGRAPH-ER, an NLP
system to generate POLIGRAPH from the text of a given pri-
vacy policy. This appendix provides instructions on how to
access our artifacts, how to use POLIGRAPH-ER, and how to
reproduce main results in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

Web scraping is restricted by certain websites. Inappropri-
ate use of crawlers (e.g., without rate limit) can lead to the
banning of your IP address. While building the benchmark
dataset, we limited our crawling to publicly accessible privacy
policy webpages and enforced an appropriate rate limit.

To our knowledge, no other artifacts associated with the
paper pose security, privacy and ethical risks to evaluators.

A.2.2 How to access

Source Code. The Git repository is at https://github.com/U
CI-Networking-Group/PoliGraph.git. The version for this
artifact evaluation is tagged as USENIX-AE-v1.

Dataset. Please see Section A.2.5.

Project Page. For up-to-date information, please check our
project page: https://athinagroup.eng.uci.edu/projects/auditin
g-and-policy-analysis/.

A.2.3 Hardware dependencies

We recommend using an x86-64 Linux machine with a min-
imum of 32 GiB of memory, 20 GiB free disk space (after
setting up conda) and an NVIDIA GPU with 24 GiB of video
memory for this artifact evaluation. A GPU is needed to run
transformer-based NLP models at a tolerable performance.

For artifact reviewers, we will offer SSH access to our
GPU server, which serves as the test machine. We will post
the login details on HotCRP.

A.2.4 Software dependencies

POLIGRAPH-ER is written in Python and requires several
Python libraries. We recommend using conda on Linux to
manage dependencies. All the code required for the artifact
evaluation has been tested on a Debian 11 GNU/Linux system
with Miniconda3 version 23.3.1.

For the full list of software dependencies, please refer to
environment.yml in our Git repository.

A.2.5 Benchmarks

POLIGRAPH-ER Extra Data. We provide an archive file
poligrapher-extra-data.tar.gz', which contains the
NER model, purpose classification model and global entity
ontology required by POLIGRAPH-ER. These resources can
be generated using the scripts released in our Git repository.
We have released them for the ease of reproducibility.
Benchmark dataset. We used privacy policies from the
PoliCheck project as the benchmark dataset. The privacy poli-
cies, although publicly available, may be copyright protected.
Users must sign a consent form before accessing it. Please fol-
low the instructions at our project page to obtain the dataset.

For artifact reviewers, we provide the dataset directly on
our server (~/dataset). Please refer to README . md in the
directory for details about the content.

A.3 Set-up

We provide step-by-step instructions at docs/usenix-artif
act-evaluation.md in the Git repository”.

Ipoligrapher-extra-data.tar.gz: https://drive.google.com/file/d/1q
HifRx93EfTkg2x1e2W_1gQAgk7HcXhP/view 2usp=sharing

2Document - Artifact Evaluation: https:/github.com/UCI-Networking-G
roup/PoliGraph/blob/USENIX- AE-v1/docs/usenix-artifact-evaluation.md

https://github.com/UCI-Networking-Group/PoliGraph.git
https://github.com/UCI-Networking-Group/PoliGraph.git
https://github.com/UCI-Networking-Group/PoliGraph/tree/USENIX-AE-v1
https://athinagroup.eng.uci.edu/projects/auditing-and-policy-analysis/
https://athinagroup.eng.uci.edu/projects/auditing-and-policy-analysis/
https://github.com/UCI-Networking-Group/PoliGraph/blob/USENIX-AE-v1/docs/usenix-artifact-evaluation.md
https://github.com/UCI-Networking-Group/PoliGraph/blob/USENIX-AE-v1/docs/usenix-artifact-evaluation.md
https://drive.google.com/file/d/1qHifRx93EfTkg2x1e2W_lgQAgk7HcXhP/view?usp=sharing
https://drive.google.com/file/d/1qHifRx93EfTkg2x1e2W_lgQAgk7HcXhP/view?usp=sharing
https://github.com/UCI-Networking-Group/PoliGraph/blob/USENIX-AE-v1/docs/usenix-artifact-evaluation.md
https://github.com/UCI-Networking-Group/PoliGraph/blob/USENIX-AE-v1/docs/usenix-artifact-evaluation.md

A.3.1 Installation

For artifact reviewers, we have set up the software environ-
ment. Please skip this step and continue to Section A.3.2. The
instructions below are provided for completeness.
1. Git clone the POLIGRAPH repository (see Section A.2.2
for the URL) and change to the cloned directory:
$ git clone <GITHUB_URL> -b USENIX-AE-v1
$ cd poligraph/
2. Download the extra-data tarball (see Section A.2.5) and
extract its contents to poligrapher/extra-data:

$ tar xf /path/to/poligrapher-extra-data.tar.gz \
-C poligrapher/extra-data

3. Create a conda environment named poligraph with all
the dependencies installed, and activate it:
$ conda env create -n poligraph -f environment.yml
$ conda activate poligraph

4. Initialize the Playwright library required by the crawler:
$ playwright install

5. Install POLIGRAPH-ER as a Python module:
$ pip install --editable .

A.3.2 Basic Test

Here we illustrate how to use POLIGRAPH-ER to generate a
POLIGRAPH from the text of a real privacy policy3 .
1. Run the HTML crawler to download the privacy policy
webpage (see Footnote 3 for the full URL):
$ python -m poligrapher.scripts.html_crawler \
<PRIVACY_POLICY_URL> example/
2. Run the NLP pipeline on the privacy policy:

$ python -m poligrapher.scripts.init_document example/

3. Run the annotators to discover relations:
$ python -m poligrapher.scripts.run_annotators example/

4. Build the POLIGRAPH:
$ python -m poligrapher.scripts.build_graph \
--pretty example/
The argument --pretty is only needed if you would
like to generate the graph in GraphML format.

To view the generated POLIGRAPH, you may use a text
editor to open example/graph-original.yml. The YAML

file describes the graph in a human-readable format. For ex-
ample, the object below is an edge we L, sratistical user
datum with a purpose “services” as the attribute.

- source: we
target: statistical user datum
key: COLLECT
text: ...
purposes:
services: ...

Please see docs/view-poligraph.md in the Git repository
for more instructions on how to view a POLIGRAPH.

3The privacy policy of “Puzzle 100 Doors™: https://web.archive.org/web/
20230330161225id_/https://proteygames.github.io/

A.4 Evaluation workflow

A.4.1 Major Claims

(C0): POLIGRAPH Generation. We show that POLIGRAPH-
ER is used to generate POLIGRAPHs for 6,084 privacy
policies in our benchmark dataset.

(C1): Comparison to Prior Policy Analyzers. In Section 4.2
of the main paper, we compared the collection relations
inferred from POLIGRAPHs to data collection tuples
extracted by PolicyLint. We claimed that our approach
identifies 40% more collection relations (tuples) than the
prior work, with 97% precision.

(C2): Policies Summarization: In Section 5.1 of the main
paper, we use POLIGRAPH to summarize a large corpus
of privacy policies and reveal common patterns among
them. We will reproduce main results reported in Figures
8a, 8b and 8c, and Findings 1 and 2.

(C3): Correct Definitions of Terms: In Section 5.2 of the
main paper, we use POLIGRAPH to access the correct-
ness of definitions of terms in privacy policies. We show
examples of different definitions in Table 5, and non-
standard terms in Table 6. We will reproduce the results.

A.4.2 Experiments

For easy copy and paste of commands, we recommend follow-
ing the link provided in Footnote 2. It also provides additional
details about the steps and results.

Estimated Time: We expect that the human time required
for each experiment is less than 10 minutes. The compute
time for EO is about 4 hours. The compute time for other
experiments is negligible (a few minutes).

(E0): PoliGraph Generation. This generates POLIGRAPHSs
for all privacy policies in our benchmark dataset. E1-E3
will be based on these generated POLIGRAPHs.
Preparation: Download and extract the benchmark
dataset (see Section A.2.5). For artifact reviewers, we
have already extracted the dataset to ~/dataset.
Execution: Do Steps 2-4 in Section A.3.2 on all privacy
policies in the benchmark dataset as follows:
$ cd ~/dataset
$ python -m poligrapher.scripts.init_document dedup/*
$ python -m poligrapher.scripts.run_annotators dedup/*
$ python -m poligrapher.scripts.build_graph dedup/*

On the test machine, init_document takes about 2.5
hours, run_annotators takes 40 minutes, and build_
graph takes 15 minutes to complete.

Results: After this experiment, each subdirectory un-
der ~/dataset/dedup, which corresponds to a privacy
policy, should have a generated POLIGRAPH in it:

$ 1s dedup/*/graph-original.yml | wc -1

6084

You may optionally check the generated POLIGRAPHS
(graph-original.yml) as we explain in Section A.3.2.

https://github.com/UCI-Networking-Group/PoliGraph/blob/USENIX-AE-v1/docs/view-poligraph.md
https://web.archive.org/web/20230330161225id_/https://proteygames.github.io/
https://web.archive.org/web/20230330161225id_/https://proteygames.github.io/

(E1): Comparison to Prior Policy Analyzers.

Preparation: This experiment requires manually la-
beled ground truth data and output from PolicyLint. For
artifact reviewers, we provided:

¢ Ground truth data at ~/dataset/external/manua
l-collection-relations.csv

* PolicyLint’s ext/ directory, which contains all the
input and output data of PolicyLint, at ~/dataset/
external/policylint-ext.

Please finish EQ before this experiment.
Execution:
1. The scripts needed for this experiment are in the ev
als/tuples/ directory in the Git repository. Copy it to
the dataset directory for convenience:
$ cd ~/dataset
$ cp -Tr ~/poligraph/evals/tuples ./eval-tuples
2. Convert collection relations inferred through POLI-
GRAPHSs into tuples in a CSV file:
$ python eval-tuples/export_poligraph_tuples.py \

-0 eval-tuples/result-poligraph.csv s_test/*
The contents in s_test/ link to a subset of 200 privacy
policies, which we use as the test set in the main paper.

3. Convert PolicyLint tuples that belong to the same set
of privacy policies into a CSV file:

$ python eval-tuples/export_policylint_tuples.py \
-e external/policylint-ext \
-0 eval-tuples/result-policylint.csv s_test/*
4. Compare results from both sides to ground truth:

$ python eval-tuples/evaluate.py \
external/manual-collection-relations.csv \
eval-tuples/result-poligraph.csv

$ python eval-tuples/evaluate.py \
external/manual-collection-relations.csv \
eval-tuples/result-policylint.csv

Results: The output in Step 4 corresponds to the preci-

sions and recalls reported in Table 4 of our main paper.

You may open eval-tuples/result-poligraph.csv

and result-policylint.csv to view tuples inferred

through PoliGraph and those found by PolicyLint.

(E2): Policies Summarization.

Preparation: Please finish EQ before this experiment.
Execution:

1. The scripts needed for this experiment are in the an
alyses/summarization directory in the Git repository.
Copy it to the dataset directory for convenience:

$ cd ~/dataset
$ cp -Tr ~/poligraph/analyses/summarization ./summarization

2. Generate statistics over the entire dataset:

$ python summarization/collect-and-purpose-statistics.py \
-0 summarization/ dedup/*

3. Generate figures of policies summarization results:
$ python summarization/plot.py \
summarization/ summarization/figure.pdf
Results: In Step 2, the script prints statistics that are
reported in Section 5.1 of the main paper. For example:

of policies that disclose the collection of known
categories: 4093

It also produces CSV files in summarization/ con-
taining statistics of data collection, sharing and usage

purposes. In Step 3, the output PDF file summarizatio
n/figure.pdf reproduces Figure 8 in the main paper.

(E3): Correct Definitions of Terms.
Preparation: Please finish EO before this experiment.
Execution:
1. The scripts needed here are in the analyses/term-d
efinitions/ directory in the Git repository. Copy it to
the dataset directory for convenience:
$ cd ~/dataset
$ cp -Tr ~/poligraph/analyses/term-definitions \

term-definitions

2. Run the script to find term definitions that do not align
with our global ontologies:

$ python term-definitions/check-misleading-definition.py \

dedup/*

3. Run the script to aggregate non-standard terms found
in privacy policies into a CSV file:

$ python term-definitions/check-self-defined-terms.py \

-0 term-definitions/non-standard-terms.csv dedup/*

Results: Step 2 creates amisleading_definitions.c
sv file in each privacy policy’s subdirectory that contains
all the different definitions. We use xsv, a command-line
CSV parser, to obtain counts of different definitions in
Table 5 in the main paper. For example:

$ xsv cat rows dedup/*/misleading_definitions.csv \
| xsv search -s parent ’“*non-personal information$’ \
| xsv frequency -s child

The output matches results in Table 5 in the main paper:

field,value,count
child,ip address,126
child, geolocation, 123
Step 3 generates a CSV file non-standard-terms.csyv,
which contains results in Table 6 in the main paper about
non-standard terms. The rows are like:
type, term,def_count,use_count,possible_meanings
DATA, technical information,126,311,advertising id|age]...
This row indicates that the data type “technical information”
is defined in 126 and used in 311 privacy policies, and possible
specific data types are listed in the last column.

A.5 Version

Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found
at https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

