
USENIX’23 Artifact Appendix:
Is Your Wallet Snitching On You?

An Analysis on the Privacy Implications of Web3

Christof Ferreira Torres
ETH Zurich

Fiona Willi
ETH Zurich

Shweta Shinde
ETH Zurich

A Artifact Appendix

This work explores the privacy implications that Web3 tech-
nologies such as decentralized applications and wallets have
on users. To this end, we build a framework that measures
exposure of wallet information. First, we study whether in-
formation about installed wallets is being used to track users
online. We analyze Tranco’s top 100K websites and find evi-
dence that 1,325 websites run scripts to probe whether users
have wallets installed in their browser. Second, we measure
whether decentralized applications and wallets leak the user’s
unique wallet address to third-parties. We intercept the traf-
fic of decentralized applications and wallets and find over
2000 leaks across 211 applications and more than 300 leaks
across 13 wallets. This appendix details how to access our
artifact (implementation of framework and our dataset) and
to reproduce our results.

A.1 Abstract
Our artifact consists of source code, datasets, and scripts to
generate the results of our paper. We aim for Artifacts Avail-
able, Artifacts Functional, and Results Reproduced badges. In
more detail, we open-source the implementation of our frame-
work via GitHub. We also provide our dataset of collected
site snapshots on the Top 100K websites, DApps and wallet
extensions, which can be utilized to reproduce the figures and
tables included in our paper.

A.2 Description & Requirements
A.2.1 Security, privacy, and ethical concerns

At its core, our framework visits websites and interacts with
wallet extensions automatically while recording any outgoing
traffic such as HTTP requests, WebSocket requests and cook-
ies. Hence, there may be security issues if the user provides a
malicious website or wallet extension to interact with. We ad-
vise testing our framework on websites and wallet extensions
that the user trusts. However, as part of our reproducibility
experiments, our framework tries to crawl some of the top
websites provided by Tranco. Hence, it might be that the users

visit illegal websites or websites with adult content, depending
on which country they reside. In terms of privacy, websites
may fingerprint or track the utilization of our framework.

A.2.2 How to access

Code: The code of our artifact is available via
the following GitHub repository: https://github.
com/christoftorres/Web3-Privacy/commit/
d5884c73dba5783ea3dc419433680596ea90e882. The
repository provides a detailed README.md file on how to
set up our framework and how to use it to reproduce our
results. For artifact evaluation, please checkout the branch
"artifact-review".
Data: The GitHub repository contains mainly the code. Most
of the data that is necessary to reproduce our results needs to
be downloaded via Zenodo: https://zenodo.org/record/
8071006.

A.2.3 Hardware dependencies

Our framework has been evaluated using an Apple MacBook
Pro with an Apple M1 Pro chip containing 10 cores and 32
GiB of memory. However, we also tested our framework on
a machine with a 12th Gen Intel(R) Core(TM) i9-12900K
containing 16 cores. We recommend using something similar.
Going as low as 16 GiB of memory and 30 GiB of storage
should work as well.

A.2.4 Software dependencies

Our framework has been tested on MacOS Monterey version
12.6 and on 64 bit Ubuntu 22.04.2 LTS (GNU/Linux 5.15.0-
67-generic). The framework leverages Node.js, Python, and
MongoDB.

A.2.5 Benchmarks

This artifact already provides all the necessary data (e.g.,
Tranco top 100K websites, blocklists, etc.) that is required to
test its functionality and reproduce the results from our paper.

https://github.com/christoftorres/Web3-Privacy/commit/d5884c73dba5783ea3dc419433680596ea90e882
https://github.com/christoftorres/Web3-Privacy/commit/d5884c73dba5783ea3dc419433680596ea90e882
https://github.com/christoftorres/Web3-Privacy/commit/d5884c73dba5783ea3dc419433680596ea90e882
https://zenodo.org/record/8071006
https://zenodo.org/record/8071006

A.3 Set-up
For more details and easy to use copy and paste commands,
we refer to the README.md of https://github.com/
christoftorres/Web3-Privacy.

A.3.1 Installation

1. Git clone our repository: https://github.com/
christoftorres/Web3-Privacy. The rest of the in-
structions assume you are in the project directory using
a terminal window.

2. For artifact reviewers: “git checkout artifact-review”

3. Install Python3 and its dependencies:

(a) apt-get update -q && apt-get install -y wget curl un-
zip software-properties-common python3-distutils
python3-pip python3-apt python3-dev

(b) python3 –version

(c) pip3 install -r requirements.txt

4. Install Node.js and its dependencies:

(a) curl -sL https://deb.nodesource.com/setup_18.x |
bash -

(b) apt-get update -q && apt-get install -y nodejs

(c) node –version && npm –version

(d) cd framework/tracker-radar-collector && npm in-
stall

(e) cd framework/request-interceptor && npm install

5. Install MongoDB:

(a) wget -qO - https://www.mongodb.org/static/pgp/server-
4.4.asc | apt-key add && echo
"deb [arch=amd64,arm64]
https://repo.mongodb.org/apt/ubuntu
bionic/mongodb-org/4.4 multiverse" | tee
/etc/apt/sources.list.d/mongodb-org-4.4.list &&
apt-get update && apt-get install -y mongodb-org

A.3.2 Basic Test

We can perform the following two basic tests to test whether
our framework is installed properly:

1. Test Web3-based browser fingerprinting detection:

(a) cd framework/tracker-radar-collector

(b) npm run crawl – -u "https://www.nytimes.com" -o
./data/ -f -v -d "requests,targets,apis,screenshots"

(c) cat data/www.nytimes.com_89db.json | grep
ethereum -C 10

(d) The terminal should display “window.ethereum”
along with other JavaScript properties.

(e) In case nytimes.com does not return any results, it
might be that they updated their script. In this case
you can try “https://xhamster.com”, however, be
aware that this is a website with adult content.

2. Test wallet address leakage detection:

(a) cd framework/request-interceptor

(b) node run –interactive -u
https://notional.finance/portfolio –debug ver-
bose -w metamask-chrome-10.22.2 -t 30

(c) cat notional.finance.json | grep
7e4abd63a7c8314cc28d388303472353d884f292

(d) The terminal should display several entries which
highlight that the wallet address is being leaked by
the DApp to third-parties.

A.4 Evaluation workflow

Disclaimer. The web is constantly changing, websites may
remove or add scripts from one day to the other. Hence, it
might be that some websites that were found to be probing
user’s wallets in the past, might not be doing so anymore.
Moreover, our framework is only as good as the components
that is uses (e.g., TRC, Puppeteer, etc.). Thus, if Puppeteer is
not able to intercept a request or if TRC is not able to load
a website properly, then our framework might not be able to
detect JavaScript calls to wallet APIs or detect leaks.

A.4.1 Major Claims

(C1): There are at least 10 websites among Tranco’s top 1K
websites that probe whether their users have a wallet
extension installed in their browser. This is proven by the
experiment (E1) described in Section 4.2 whose results
are reported in Table 3.

(C2): While most websites only probe for the win-
dow.ethereum object, there are also websites that probe
for different combinations of wallet APIs. This is proven
by the experiment (E1) described in Section 4.2 whose
results are reported in Table 4.

(C3): Wallet extension probing is being performed mostly
by websites categorized as adult content. This is proven
by the experiment (E1) described in Section 4.2 whose
results are reported in Table 5.

(C4): The top 10 third-party scripts that probe for wallet
APIs also collect other information that is required to
perform browser fingerprinting. This is proven by the
experiment (E1) described in Section 4.2 whose results
are reported in Table 6.

https://github.com/christoftorres/Web3-Privacy
https://github.com/christoftorres/Web3-Privacy
https://github.com/christoftorres/Web3-Privacy
https://github.com/christoftorres/Web3-Privacy

(C5): The combination of five popular blocklists results in
56% of the third-party scripts being blocked. This is
proven by the experiment (E1) described in Section 4.2
whose results are depicted in Figure 5.

(C6): We detect more leaks than Winter et al. [66] due to the
fact that we also analyze HTTP POST requests and Web-
Socket requests. This is proven by the experiment (E2)
described in Section 4.3.1 whose results are reported in
Table 7.

(C7): Infura is the most widespread third-party towards
where wallet addresses are leaked. This is proven by
the experiment (E3) described in Section 4.3.1 whose
results are reported in Table 8.

(C8): Exchanges leak the most often the user’s wallet address
to third-parties. This is proven by the experiment (E3)
described in Section 4.3.1 whose results are reported in
Table 9.

(C9): 13 out of 100 wallet extensions leak the user’s wallet
address to third-parties. This is proven by the experi-
ment (E4) described in Section 4.3.2 whose results are
reported in Table 10.

A.4.2 Experiments

(E1): [Analyze Web3-Based Browser Fingerprinting] [5
human-minutes + 5 compute-minutes]: This experiment
analyses the data that was gathered through our crawl
on the top 100K websites in November 2022 and parsed
via our browser fingerprinting detection script.
How to: Performing the entire crawl from scratch on
the top 100K websites would take very long and re-
sult in different results as the web keeps on changing.
Therefore, we provide a dump of our MongoDB collec-
tion which already contains the data processed by our

“detect_fingerprinting.py” script. The dump can be im-
ported to analyze our findings. However, for reproducibil-
ity purposes we also provide a raw snapshot of all the
requests and JavaScript calls that were collected via our
crawl in November 2022.
Preparation: Download the browser
fingerprinting datasets using “wget
https://zenodo.org/record/8071006/files/browser-
fingerprinting-datasets.zip && unzip
browser-fingerprinting-datasets.zip && mv
datasets browser-fingerprinting/ && rm
browser-fingerprinting-datasets.zip” and the
browser fingerprinting results using “wget
https://zenodo.org/record/8071006/files/browser-
fingerprinting-results.zip && unzip browser-
fingerprinting-results.zip && mv results browser-
fingerprinting/ && rm browser-fingerprinting-
results.zip”. Change the working directory using

“cd browser-fingerprinting/results”. Import the Mon-
goDB dump by first creating a temporary directory

using “mkdir db”. Afterwards, run MongoDB locally
using the temporary directory: “mongod –dbpath
db” and import the collection using “mongoimport
–uri="mongodb://localhost:27017/web3_privacy"
–collection fingerprinting_results –type json –file
fingerprinting_results.json.
Execution: After having imported the MongoDB dump
and making sure that MongoDB is running, we can
run the analysis script by first chaining our work-
ing directory using “cd browser-fingerprinting/analysis”
and running the analysis script using “python3 ana-
lyze_detected_fingerprinting.py”.
Results: The terminal will display Tables 3, 4, 5, and
6, which should be equivalent to the tables included in
the paper. Moreover, the script will also output in the
same directory as the analysis script a PDF file named

“blocklists.pdf” which should be equivalent to Figure 5 in
the paper. Please note, in order to be able to plot the file

“blocklists.pdf” you are required to have LaTeX installed
on your system.

(E2): [Analyze Wallet Address Leakage] [5 human-minutes
+ 5 compute-minutes]: This experiment analyzes the
requests collected via our interceptor on the 66 DApps
by Winter et al. and compares them to the results of
Winter et al.
How to: Performing the entire crawl from scratch on
66 websites would take very long and result in different
results as the web keeps on changing. Therefore, we
provide a snapshot of all the requests that we intercepted
during our crawl.
Preparation: Download the wallet ad-
dress leakage datasets using “wget
https://zenodo.org/record/8071006/files/wallet-
address-leakage-datasets.zip && unzip wallet-address-
leakage-datasets.zip && mv datasets wallet-address-
leakage/ && rm wallet-address-leakage-datasets.zip”
and the wallet address leakage results using “wget
https://zenodo.org/record/8071006/files/wallet-
address-leakage-results.zip && unzip wallet-address-
leakage-results.zip && mv results wallet-address-
leakage/ && rm wallet-address-leakage-results.zip”.
Change the working directory using “cd wallet-address-
leakage/analysis”.
Execution: Run the comparison script us-
ing “python3 find-leaks-and-scripts-winter-
et-al.py ../results/whats_in_your_wallet/crawl
../datasets/whats_in_your_wallet”.
Results: The terminal will display at the end Table 7,
which should be equivalent to Table 7 included in the
paper.

(E3): [Analyze Wallet Address Leakage] [5 human-minutes
+ 60 compute-minutes]: This experiment analyzes the
requests collected via our interceptor on the DAp-
pRadar.com dataset.

How to: Performing the entire crawl from scratch on
DAppRadar.com dataset would take very long and result
in different results as the web keeps on changing. There-
fore, we provide a snapshot of all the requests that we
intercepted during our crawl.
Preparation: Change the working directory using “cd
wallet-address-leakage/analysis”.
Execution: Run the analysis script using “python3 find-
leaks-and-scripts-dapps.py”.
Results: The terminal will display at the end Tables 8
and 9, which should be equivalent to Tables 8 and 9
included in the paper.

(E4): [Analyze Wallet Address Leakage] [5 human-minutes
+ 5 compute-minutes]: This experiment analyzes the
requests collected via our interceptor on 100 popular
wallet extensions.
How to: Performing the entire crawl from scratch on
the wallet extensions dataset would take very long as it
requires a large amount of manual interaction with each
wallet extension. Therefore, we provide a snapshot of all
the requests that we intercepted during our crawl.
Preparation: Change the working directory using “cd
wallet-address-leakage/analysis”.
Execution: Run the analysis script using “python3 find-
leaks-and-scripts-wallet-extensions.py”.
Results: The terminal will display at the end Table 10,
which should be equivalent to Table 10 included in the
paper.

A.5 Notes on Reusability
The folder “browser-fingerprinting/datasets/tranco” contains
the list of websites that have been crawled during our study.
Researchers can reuse this list to try to reproduce the re-
sults or perform followup studies. The folder “browser-
fingerprinting/results/crawl” contains snapshots of all the
JavaScript calls and requests that we collected during our
study. Researchers can reuse these snapshots to compare
to reproduce our results and compare their own results to
ours. Researchers can easily extend our framework to analyze
other wallet APIs by modifying the files “walletSimulator.js”
and “walletSimulatorWithAntiBotDetection.js” contained in
“framework/tracker-radar-collector/helpers”.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version

