
USENIX’23 Artifact Appendix: Hoedur: Embedded Firmware Fuzzing
using Multi-Stream Inputs

Tobias Scharnowski1, Simon Wörner1, Felix Buchmann2, Nils Bars1,Moritz Schloegel1, and Thorsten Holz1

1CISPA Helmholtz Center for Information Security
2Ruhr-Universität Bochum

A Artifact Appendix

A.1 Abstract

Hoedur is a rehosting-based firmware fuzzer that introduces a
multi-stream input format that extends the concepts contained
in previous rehosting-based fuzzing works such as P2IM,
uEmu, and Fuzzware. This format helps the fuzzer to mutate
its input effectively.

We provide GitHub repositories containing data and scripts
to install our prototype, to automatically reproduce our new
firmware targets/configurations, and to auto-generate configu-
rations to rerun our experiments based on the available com-
putation resources. Our experiments run in Docker contain-
ers. These can be rebuilt via the provided scripts, or prebuilt
Docker containers can be used to rerun our experiments. To
facilitate the reproduction, we provide an alternative experi-
ment profile that reduces the CPU requirements while still, in
our view, supporting our major claims.

In our experiments, we compare our fuzzer against itself
in different configurations (with and without multi-stream
inputs) and against the related work Fuzzware given that this
tool outperformed P2IM and uEmu in an evaluation. We test
Hoedur’s speed and reliability in finding known bugs, produc-
ing code coverage, and finding previously unknown vulnera-
bilities.

A.2 Description & Requirements

Access Privileges. The user under which the experiments
are supposed to run requires access to Docker. root
privileges are also required to configure the environment
for running the related work Fuzzware (see scripts/fuz-
zware/set_limits_and_prepare_afl.sh).

OS and software. Our fuzzing experiments require Linux
hosts. We recommend a recent Ubuntu Server installation. On
these hosts, Python 3, rsync, and Docker must be installed
and the user must be part of the docker group.

Computation Resources. Our original experiments took
around 30 CPU years to run. To provide a less resource in-
tensive option, we created an alternative experiment profile
for the artifact evaluation that should reproduce our major
findings in around 3 CPU years worth of computation time.
If changes to these configurations are desired, we provide a
configuration format that allows customizing the experiment
duration and the repetition counts.

To rerun the experiments within 15 days, the equivalent of
the following computation resources will be required:

1. Reduced experiment: 2 servers, 50 physical cores each.
2. Full experiment: 20 servers, 50 physical cores each.

Storage. In total, the experiments will produce a maximum
of 300 GB of data which needs to be pulled onto one server
to compute and aggregate all metrics.

A.2.1 Security, privacy, and ethical concerns

Running the experiments will require root access and access
to Docker on the reproduction machines. No security mech-
anisms are disabled, and the machines are not exposed to
additional security risks.

Hoedur has found previously-unknown vulnerabilities
which have been responsibly disclosed to the respective ven-
dors. Our prototype may find additional vulnerabilities, possi-
bly even in the provided targets. Please handle these findings
responsibly as well.

A.2.2 How to access

The code and experiment data are available on GitHub under
github.com/fuzzware-fuzzer/hoedur-experiments. We created
the tag sec23-ae-accepted as a stable reference.

From there, the complete reproduction is done in Docker
containers. These can be built from Dockerfiles, or our pre-
built containers can be used. The repository README con-
tains all information required to build and run the experiments.

https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments


A.2.3 Hardware dependencies

None (no special hardware, for general compute requirements,
see Descriptions & Requirements above).

A.2.4 Software dependencies

To run the experiments, a Linux distribution is required. We
recommend a recent version of Ubuntu Server. On these hosts,
Python 3, rsync, sudo, and Docker need to be installed and
set up for the user. For the optional step of rebuilding our
target binaries, a small number of Python packets need to be
installed via the provided requirements.txt file.

A.2.5 Benchmarks

As a part of our firmware fuzzing targets, we use the firmware
binaries previously published in the P2IM, uEmu, and Fuz-
zware experiments. We include copies of these binaries in
the hoedur-experiments GitHub repository. Section 6.1 of the
paper explains that we adapt targets from the coverage mea-
surement data set by applying binary patches. You can find
these patches along with comments and reproduction scripts
at 02-coverage-est-data-set/binary-patching.

A.3 Set-up
All of our experiments use Docker as an execution environ-
ment. Docker needs to be installed on the system, and the user
under which the experiments will be run needs to be added
to the Docker group. Also, ensure that Python 3 is installed
on the system. In case you would like to rebuild our target
binaries using the reproduce_targets_and_configs.py script,
pip is required.

For each host on which the related work FUZZWARE might
be run, prepare the system to run FUZZWARE by running
scripts/fuzzware/set_limits_and_prepare_afl.sh as root.

The hosts to be used for the experiment are configured in
experiment-config/available_hosts.txt (see also experiment-
config/README.md) and looks like the following:

my-host-1 <number_of_physical_cores_1>
my-host-2 <number_of_physical_cores_2>

For example, if everything should be run and metrics be
generated on the same, single host with 70 cores, the configu-
ration is as simple as:

localhost 70

If two servers (my-host-1 and my-host-2) with 50 cores
each are to be used, and the results should be aggregated on
host-1, then the configuration would look like the following:

localhost 50
my-host-2 50

To allow some of the experiment scripts to access
each host via SSH/rsync, create an SSH config entry in
~/.ssh/config:

Host my-host-1
Hostname 12.34.56.78
User user
IdentityFile ~/.ssh/my_privkey.key
AddKeysToAgent yes

A.3.1 Installation

To install Hoedur, first, make the Docker containers avail-
able to your system. To re-build the Docker containers, run
install.py. To obtain the pre-built Docker containers, run
./install.py --prebuilt.

As an optional step, you may wish to reproduce our new
target firmware binaries and auto-converted configurations
and bug detection hooks. To reproduce these, run repro-
duce_targets_and_configs.py.

A.3.2 Basic Test

To make sure that the basic installation has been successful,
first run:

./scripts/check_install.py

You may also like to run one of the bug reproducing inputs
provided in the experiments repository. To run the reproducer
for CVE-2022-41873, run:

cd ./04-prev-unknown-vulns/repro-run-scripts
./run_reproducer_CVE-2022-41873.sh
./run_reproducer_CVE-2022-41873.sh --trace

This should indicate that the bug new-Bug-CVE-2022-41873
has been triggered by the reproducing input.

A.4 Evaluation workflow
Our experiments test four different aspects of Hoedur: The
ability to trigger bugs, to produce code coverage, to make
previously unavailable mutation types (by the example of
dictionaries) effective, and to find previously unknown bugs.

We organized the hoedur-experiments repository in such
a way that one subdirectory corresponds to one section in
the evaluation of the paper. We provide scripts to run these
experiments, and try to facilitate this process by providing the
additional utility generate_host_run_config.py which accepts
a description of computation resources (SSH-available hosts
as well as the number of cores to use on each host) and gener-
ates run scripts for each host that together allow reproducing
our results. We also created experiment profiles that repro-
duce the major insights of our experiments while reducing
the CPU requirements.

https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/building/requirements.txt
https://github.com/RiS3-Lab/p2im-real_firmware
https://github.com/MCUSec/uEmu-real_world_firmware
https://github.com/fuzzware-fuzzer/fuzzware-experiments
https://github.com/fuzzware-fuzzer/fuzzware-experiments
https://github.com/fuzzware-fuzzer/hoedur-experiments
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set/binary-patching
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/reproduce_targets_and_configs.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/available_hosts.txt
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/README.md
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/README.md
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/install.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/reproduce_targets_and_configs.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/reproduce_targets_and_configs.py
https://github.com/fuzzware-fuzzer/hoedur-experiments
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py


A.4.1 Major Claims

(C1): HOEDUR outperforms the state of the art reference
FUZZWARE in terms of its ability to find bugs quickly.
This is proven by the experiment Bug Finding Ability
described in Section 6.2 in the paper and the results of
which are reported in Table 1 and Table 2. This cor-
responds to the directory 01-bug-finding-ability in the
artifact.

(C2): HOEDUR is either on par with or outperforms the
state of the art reference FUZZWARE and its version
SINGLE-STREAM-HOEDUR (which does not use our
multi-stream input representation) in terms of code cov-
erage. This is proven by the experiment Code Coverage:
Established Data Set described in Section 6.3 in the pa-
per, whose results are reported in Figure 6 and Figure 8.
This corresponds to the directory 02-coverage-est-data-
set in the artifact.

(C3): Our multi-stream input representation allows using
dictionary mutations effectively. These dictionaries do
not provide a significant benefit when using a flat binary
input format. This is proven by the experiment Advanced
Mutations via Dictionaries described in Section 6.4 in
the paper, whose results are reported in Figure 7. This
corresponds to the directory 03-advanced-mutations in
the artifact.

(C4): HOEDUR is able to find previously unknown vulnera-
bilities. This is proven by the experiments Bug Finding
Ability and Finding Unknown Vulnerabilities described
in Section 6.2 and Section 6.5 in the paper. The results
are reported in Table 2 and Table 3. This corresponds
to the directories 01-bug-finding-ability and 04-prev-
unknown-vulns in the artifact.

A.4.2 Experiments

In summary, the experiment workflow is the following:
1. Configure the experiment hosts via available_hosts.txt.
2. Install and setup: install.py and

set_limits_and_prepare_afl.sh on each experiment host.
3. Generate the experiment run configurations: gener-

ate_host_run_config.py. Upload via --upload.
4. Run experiment configs on the respective experiments

hosts (make sure to use tmux or similar).
5. Pool data together: sync_experiment_data.py
6. Generate metrics: compute_metrics.py.
7. Inspect the results (see per-experiment description).
Now we include more details on each step. Steps 1 to 6

need to be taken once to generate the data corresponding to
the results reported in our paper for the different experiments.
From there, the final experiment-specific step is to check the
relevant output for each experiment manually.

We provide the utilities available_hosts.txt, gener-
ate_host_run_config.py and run_experiment.py to help with
scheduling and running the fuzzing experiments for E1,

E2, E3 and E4. Before running these experiments, we as-
sume that the Docker containers are already installed on
each host on which any parts of the experiments are sup-
posed to be run (install.py), and that each host is avail-
able via an SSH configuration (see Section A.3.1) and
set up to run the reference fuzzer FUZZWARE (scripts/fuz-
zware/set_limits_and_prepare_afl.sh).

The first manual step after this installation is to deter-
mine the hosts on which to run the experiments and to
configure them in available_hosts.txt. The fuzzing run ex-
periment configurations can then be generated using gener-
ate_host_run_config.py. The experiment configuration YAML
files will be located in experiment-config/host-run-configs as
<hostname>.yml. These configurations need to be copied to
the corresponding hosts. Uploading the configurations can be
done either manually or by running:

./generate_host_run_config.py --upload

Given the experiment configuration file on a host, the ex-
periment can be started via:

./run_experiment.py <HOST_CONFIG>.yml

Please note that these are long-running experiments, such
that tmux or similar tools should be used to run them. After
running the fuzzers to completion, the workflow will be to syn-
chronize all results into the hoedur-experiments directory
of the main host via sync_experiment_data.py and running
the post processing script compute_metrics.py to generate all
metrics.

From here, the generated results need to be confirmed by
inspecting the results directory of each experiment. We
document which files within the results directory contain
the data from our paper for each experiment in the descrip-
tions below. You may also refer to the README of each
experiment directory of the published hoedur-experiments
repository for more info on the available data.
(E1): [01-bug-finding-ability] [60 human-minutes + 750

compute-days + max 100GB disk]:
How to: Reproduce claim C1 / Section 6.2 in the paper.
Preparation: Generate run configurations using gener-
ate_host_run_config.py (see above) and copy them to the
respective hosts. Make sure the required Docker contain-
ers are installed and the hosts are set up on all experiment
hosts via install.py and set_limits_and_prepare_afl.sh
(see above).
Execution: Run the fuzzers using the run scripts. En-
sure a stable execution environment when running via
SSH, such as tmux. After the fuzzers have finished exe-
cuting, sync the results via sync_experiment_data.py
and then compute all remaining metadata via com-
pute_metrics.py.
Results: After generating all metadata for the com-
pleted experiments, the results can be found in
01-bug-finding-ability/results/bug-discovery-timings. In

https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/03-advanced-mutations
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/available_hosts.txt
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/install.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/sync_experiment_data.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/compute_metrics.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/available_hosts.txt
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/run_experiment.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/install.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/available_hosts.txt
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/host-run-configs
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/sync_experiment_data.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/compute_metrics.py
https://github.com/fuzzware-fuzzer/hoedur-experiments
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/generate_host_run_config.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/install.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/scripts/fuzzware/set_limits_and_prepare_afl.sh
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/sync_experiment_data.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/compute_metrics.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/compute_metrics.py
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability/results/bug-discovery-timings


this directory, the bug raw discovery timing data
can be found in timings.txt and timings.json
and represent the data also contained in Table 1
in the paper. The table representations as present
in the paper can be found in the results direc-
tory under table_1_cve_discovery_timings.tex and ta-
ble_2_add_bugs_discovery_timings.tex.
The overall results should resemble those in the paper:
It is expected that HOEDUR finds bugs more quickly
than FUZZWARE overall. Keep in mind that due to the
non-deterministic nature of fuzzing, these numbers may
vary. Also keep in mind that based on the experiment pro-
file used, the number of iterations and fuzzing duration
may be altered from the original experiments. For ex-
ample, the default experiment configuration shortens the
fuzzing runs from the original 15-day duration. For the
exact numbers of each experiment configuration/profile,
please refer to the experiment-config README. To
fully rerun the original configuration, please use the cor-
responding, pre-supplied experiment configuration/pro-
file name full-eval.

(E2): [02-coverage-est-data-set] [60 human-minutes + 180
compute-days + max 100GB disk]:
How to: Reproduce claim C2 / Section 6.3 in the paper.
Preparation: Already done in E1.
Execution: Already done in E1.
Results: After generating all metadata for the com-
pleted experiments, the results can be found in 02-
coverage-est-data-set/results/coverage. The raw plot data
can be found in the directory tree in compressed for-
mat under charts/<fuzzer_name>. It contains the raw
data also shown in Figure 6 in the paper. The graph-
ical plot representations as present in Figure 6 and
Figure 8 in the paper can be found in the parent di-
rectory under figure_6_baseline_coverage_plot.pdf and
figure_8_appendix_baseline_coverage_plot.pdf, respec-
tively. It is expected that HOEDUR is on par with or
generates more coverage than FUZZWARE and SINGLE-
STREAM-HOEDUR. See also the general disclaimer
about fuzzing experiment variance and experiment con-
figurations/profiles under item Results of E1.

(E3): [03-advanced-mutations] [60 human-minutes + 40
compute-days + max 50GB disk]:
How to: Reproduce claim C3 / Section 6.4 in the paper.
Preparation: Already done in E1.
Execution: Already done in E1.
Results: After generating all metadata for the com-
pleted experiments, the results can be found in 03-
advanced-mutations/results/coverage. The raw plot data
can be found in the directory tree in compressed format
under charts/<fuzzer_name>. It contains the raw data
also shown in Figure 7 in the paper. The graphical plot
representations, as present in Figure 6 and Figure 8 in
the paper, can be found in the parent directory under fig-

ure_7_baseline_dict_coverage_plot.pdf. It is expected
that HOEDUR+DICT performs best overall, while HOE-
DUR+DICT does not provide the same level of improve-
ment over its single-stream version.

(E4): [04-prev-unknown-vulns] [60 human-minutes + 50
compute-days + max 10GB disk]:
How to: Reproduce claim C4 / Section 6.1 and Sec-
tion 6.5 in the paper.
Preparation: Already done in E1.
Execution: Already done in E1.
Results: For this experiment we provide pre-extracted
samples of crashing inputs that trigger each reported bug
in the repository. For a full overview of the reported bugs,
see the tables in 04-prev-unknown-vulns/README.md.
Some of the new bugs have been found in the CVE
target set of FUZZWARE. As such, the correspond-
ing bug reproducing inputs can be found in 01-bug-
finding-ability/results/bug-reproducers. The other bug
reproducing inputs can be found in 04-prev-unknown-
vulns/results/bug-reproducers.
As part of the reproduction, we also run HOEDUR on
the remaining targets for a limited amount of time. As
some new bugs require more computation power for
HOEDUR to find and are found with some variance, it is
expected that this will find some of the newly reported
bugs, but may not reproduce all of them. The results
can be found in 04-prev-unknown-vulns/results/bug-
reproducers. The reproducers can be found in the direc-
tory tree of bug-reproducers. They represent triggers
for the bugs listed in Table 3 in the paper. It is expected
that HOEDUR triggers at least some of the bugs within
the fuzzer reruns and as a result, a set of reproducers
can be found and run via the scripts located in 04-prev-
unknown-vulns/repro-run-scripts.

A.5 Notes on Reusability

We designed our experiments to be extendable and con-
figurable in the computation resources required. Our
configurations allow adding more experiments, such as
05-my-other-experiment. Our scripts are built to be able
to compute metadata for new fuzzing runs, such that one
should only need to add another experiment and metrics as
configurations. Coverage metadata, alongside their plots, can
be configured to be computed using the provided scripts and
setup. Some additional metrics are already computed, even
though they are not referenced in this document. After run-
ning the experiments, one can find these metrics under the
results experiment sub-directories.

Regarding the fuzzer itself, our prototype is published open
source under https://github.com/fuzzware-fuzzer/hoedur. The
source code separates the emulator from the fuzzer rather
strictly, such that the community may make use of both com-
ponents.

https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability/results/table_1_cve_discovery_timings.tex
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability/results/table_2_add_bugs_discovery_timings.tex
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability/results/table_2_add_bugs_discovery_timings.tex
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/experiment-config/README.md
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set/results/coverage
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set/results/coverage
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set/results/figure_6_baseline_coverage_plot.pdf
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/02-coverage-est-data-set/results/figure_8_appendix_baseline_coverage_plot.pdf
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/03-advanced-mutations
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/03-advanced-mutations/results/coverage
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/03-advanced-mutations/results/coverage
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/03-advanced-mutations/results/figure_7_baseline_dict_coverage_plot.pdf
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/03-advanced-mutations/results/figure_7_baseline_dict_coverage_plot.pdf
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/README.md
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability/results/bug-reproducers
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/01-bug-finding-ability/results/bug-reproducers
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/results/bug-reproducers
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/results/bug-reproducers
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/results/bug-reproducers
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/results/bug-reproducers
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/repro-run-scripts
https://github.com/fuzzware-fuzzer/hoedur-experiments/blob/sec23-ae-accepted/04-prev-unknown-vulns/repro-run-scripts
https://github.com/fuzzware-fuzzer/hoedur


A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


