
USENIX’23 Artifact Appendix: SANDDRILLER: A Fully-Automated
Approach for Testing Language-Based JavaScript Sandboxes

Abdullah AlHamdan, Cristian-Alexandru Staicu
CISPA Helmholtz Center for Information Security

{abdullah.alhamdan, staicu}@cispa.de

A Artifact Appendix

A.1 Abstract

In this artifact, we showcase SANDDRILLER, the first tool
for testing language-based sandboxes JavaScript, supporting
both client-side and server-side sandboxes. SANDDRILLER
takes as input a set of self-contained JavaScript files (cor-
pus), interposes oracles using instrumentation, and executes
each instrumented test case inside a target sandbox. Addition-
ally, SANDDRILLER also recombines ingredients from known
exploits to generate variants of the files in the corpus that
are more likely to trigger a bug in the target sandboxes. We
present experiments that demonstrate how SANDDRILLER
works overall (single input file, variant generator) and partially
replicate important results from the paper (V8 tests corpus
with the vm2 sandbox). SANDDRILLER is publicly available at
https://github.com/vdata1/SandDriller. For this arti-
fact evaluation, we seek the following badges: available and
functional.

A.2 Description & Requirements

In this section, we describe the software and hardware require-
ments for running SANDDRILLER and explain how to obtain
the corpora used in the evaluation of the paper.

A.2.1 Security, privacy, and ethical concerns

There are no risks for the reviewers of this artifact with respect
to security and privacy of their machines. SANDDRILLER
identified 12 zero-day vulnerabilities in widely-used, open-
source sandboxes. A security advisory was published for each
of these findings.

A.2.2 How to access

The source code is available on our GitHub repository
https://github.com/vdata1/SandDriller/releases/
tag/1.0, including an important README file that describe
in detail the usage of the tool and the different configuration
options available.

A.2.3 Hardware dependencies

For the paper’s evaluation, we ran SANDDRILLER on a server
with 64 Intel Xeon E5-4650L@2.60GHz CPU cores and
768GB of memory. However, SANDDRILLER does not re-
quire any specific hardware feature, so it can run on any other
machine running a Linux distribution. Nonetheless, since
SANDDRILLER makes extensive use of multi-threading dur-
ing testing, we recommend that the number of parallel workers
be set to maximum the number of physical threads available
on the machine. In Section A.4.2, we explain how to set this
important configuration option.

A.2.4 Software dependencies

While SANDDRILLER might run on other operating systems,
we require a Linux distribution for the evaluation. For obtain-
ing the results described in this artifact, we require running
the tool using Node.js version 14.15. We recommend using
the Node Version Manager (nvm) 1 to install this exact ver-
sion of Node.js. We also expect the machine to have git
and npm installed and correctly configured. To showcase the
tool’s capability we run tests using two sandboxes: vm2 and
safe-eval. Both these tools are declared as third-party de-
pendency in the package.json file, so they do not need to
be installed separately. However, since we do not ship them
with our tool, the input corpora need to be downloaded and
configured separately, as described below.

A.2.5 Benchmarks

To test the sandboxes, we used ECMAScript Conformance
Test Suite and V8 engine’s test suites as benchmarks.
SANDDRILLER takes each of these tests, instrument
them, and run them inside the sandbox under test. In
our experiments, we used ECMAScript test cases avail-
able at https://github.com/tc39/test262/tree/
99b2a70789b27d433f9036b98572a4443d91e01f/
test, and V8 test cases available at
https://github.com/nodejs/node/tree/
e46c680bf2b211bbd52cf959ca17ee98c7f657f5/deps/

1https://github.com/nvm-sh/nvm/

1

https://github.com/vdata1/SandDriller
https://github.com/vdata1/SandDriller/releases/tag/1.0
https://github.com/vdata1/SandDriller/releases/tag/1.0
https://github.com/tc39/test262/tree/99b2a70789b27d433f9036b98572a4443d91e01f/test
https://github.com/tc39/test262/tree/99b2a70789b27d433f9036b98572a4443d91e01f/test
https://github.com/tc39/test262/tree/99b2a70789b27d433f9036b98572a4443d91e01f/test
https://github.com/nodejs/node/tree/e46c680bf2b211bbd52cf959ca17ee98c7f657f5/deps/v8/test/mjsunit
https://github.com/nodejs/node/tree/e46c680bf2b211bbd52cf959ca17ee98c7f657f5/deps/v8/test/mjsunit
https://github.com/nodejs/node/tree/e46c680bf2b211bbd52cf959ca17ee98c7f657f5/deps/v8/test/mjsunit
https://github.com/nvm-sh/nvm/

v8/test/mjsunit. As described below, during installation,
these repositories need to be cloned into a specific subfolder.

A.3 Set-up
A.3.1 Installation

First, clone the SANDDRILLER repository locally in a di-
rectory we will call $PATH_TO_SANDDRILLER. To install the
required third-party packages, run in the project’s main di-
rectory npm -prefix . install .. This will install all the
required dependencies and all the npm-available (vulnerable)
sandboxes used in our experiments.

Next, clone the V8 corpus inside the
$PATH_TO_SANDDRILLER/Dataset/ folder:

cd D a t a s e t
g i t c l o n e h t t p s : / / g i t h u b . com / n o d e j s / node /
g i t r e s e t −− ha rd e46c680
cd . .

A.3.2 Basic Test

To run a simple test with SANDDRILLER, go to
test directory by typing on the command line
cd $PATH_TO_SANDDRILLER/test and run node
run-multi-proc.js.
As a result, RESULTS.csv will be written on
$PATH_TO_SANDDRILLER/Results/ showing the test
results of SANDDRILLER. Results will also be shown on the
terminal, i.e., a JSON result object for each test, followed by
a summary of the results.

When executing SANDDRILLER on a fresh installation, it
uses a toy corpus containing three JavaScript files. SAND-
DRILLER should report two security violations and a crash
for this corpus.

A.4 Evaluation workflow
A.4.1 Major Claims

SANDDRILLER is a testing approach for automatically detect-
ing sandbox escape vulnerabilities in real-world JavaScript
sandboxes. To successfully isolate untrusted code, JavaScript
sandboxes must block access to foreign references and prevent
the side effects of hosting third-party code during runtime,
such as getting stuck in an endless loop. SANDDRILLER aims
to automatically synthesize exploits that violate this objective
by escaping the sandbox. It first interposes checks that at exe-
cution time detect foreign references pointing outside of the
sandbox, and subsequently exploits such references, creating
an end-to-end exploit.

We make the following claims about our prototype:
(C1): Starting with (a set of) benign JavaScript file(s) as in-

put, SANDDRILLER can detect problematic references

at runtime, which can be used to escape the sandbox.
Concretely, SANDDRILLER synthesizes exploits that at-
tempt to access privileged operations outside the sand-
box, and/or test write values into the global scope, out-
side the sandbox. We have conducted experiment (E1)
and (E3) as described in Section A.4.2 to demonstrate
this capability.

(C2): SANDDRILLER can construct exploits by synthesizing
variants of the input files. By using a variant generator
it provides more comprehensive tests for verifying the se-
curity of a sandbox. We have demonstrated this through
experiment (E2) as described in Section A.4.2.

These claims collectively support our paper’s main assertion
that SANDDRILLER is an effective testing approach for auto-
matically detecting zero-day sandbox escape vulnerabilities.

A.4.2 Experiments

Since replicating our entire testing campaign would incur a
significant effort on the reviewers’ side, we show how SAND-
DRILLER works with a single file as input and with a fairly
large corpus (5,000+ JavaScript files from the V8 tests), for
both using a single sandbox and a single Node.js version.
(E1): [First exploit] [For one valid test case: 15 human-

minutes + 5 compute-minutes]: In this experiment, we
show step-by-step how to come up with the first working
exploit using vm2 sandbox and a single test case.
How to: To successfully accomplish this experiment,
we start with configuring and running our tool, then run
the instrumented code on the sandbox, and finally, apply
delta debugging to reach the minimal working code for
the exploit.
Preparation: First, we start editing the source code of
the tool for the corpus for this experiment by uncomment-
ing line number 138 in test/run-multi-proc.js (set
regress-746909.js as the single file in the corpus).
Moreover, go to test/process-runner.js and make
vm2 as the sandbox to test by editing line number 10 to
const sandbox = "vm2";.
Execution: Run SANDDRILLER as mentioned
in A.3.2. As a result, SANDDRILLER will write
the successful instrumented test case on path
/tmp/res/. First, let us inspect the content of
the generated file regress-746909.js, which is an
instrumented version of the file in our corpus https:
//github.com/nodejs/node/blob/main/deps/v8/
test/mjsunit/regress/regress-746909.js. It
contains code for verifying potential foreign references
and for attempting to escape the sandbox using such
references. For example, for each function invocation,
SANDDRILLER obtains the root prototype of its result
let grtA = getRootPrototype(r); and attempts
to modify the corresponding root prototype grtA.FIA
= ’FI: Got it?’;. Copy the exploit (instrumented

2

https://github.com/nodejs/node/tree/e46c680bf2b211bbd52cf959ca17ee98c7f657f5/deps/v8/test/mjsunit
https://github.com/nodejs/node/blob/main/deps/v8/test/mjsunit/regress/regress-746909.js
https://github.com/nodejs/node/blob/main/deps/v8/test/mjsunit/regress/regress-746909.js
https://github.com/nodejs/node/blob/main/deps/v8/test/mjsunit/regress/regress-746909.js

test case) and host it on the target sandbox, vm2. To
this end, we provided template for each sandbox in
templates_sandboxes for time-saving. Paste the
generated exploit in exploit.js and run the vm2.js
file using Node.js. Observe how the global root
prototype changes as a result of running the code inside
the sandbox, i.e., a new property is added on the root
prototype. Optionally, apply manual delta debugging by
deleting the unnecessary lines of code in the exploit to
get the minimal working exploit. To that end, after any
removing spurious lines in the code, rerun the exploit
to verify that the desired side-effect in the global scope
is still present. To get the minimal working exploit, a
sequence of lines of code deletion and reruning of the
code might be required. For this specific test case, we
recommend deleting the first 122, 139-148, 150-180,
180-192, 204-end of the code lines to get a working
exploit. The code at this stage requires more editing to
produce the final working exploit showed in Figure 1 of
the paper. However, we provided a working exploit for
this experiment, showing the possible steps performed
during delta debugging in demo_results/E1.js.
Results: After completing the experiment, the detailed
result can be found in Results/RESULTS.csv

(E2): [Use the Variant Generator] [For one valid test case
20 human-minutes + 5 computing-minutes]:
How to: To successfully accomplish this experiment,
we start with configuring our tool to enable the gen-
erator, then run the instrumented code on the sandbox,
and finally, apply delta debugging to reach the minimal
working code for the exploit.
Preparation: First we enable the generator in
test/process-runner.js by assigning const
useGenerator = true at line 11 and using safe-eval
as the sandbox to test. Then, uncomment line number
141 in test/run-multi-proc.js, and comment line
138.
Execution: Run SANDDRILLER as mentioned in
A.3.2. As a result, SANDDRILLER will write vari-
ants of successful instrumented test cases with on path
/tmp/res/. Copy the instrumented test case, named
“array-push2_v1.js” and host it on the target sand-
box, safe-eval. As before, we provided a template
for each sandbox in templates_sandboxes for time-
saving: paste the explit in the exploit.js file and
run safe-eval.js with Node.js to observe its side ef-
fect in the global scope (a new property on the root
prototype). We Optionally, apply delta debugging by
deleting the unnecessary lines of code in the exploit
to get the minimal working exploit. For this specific
test case, we recommend deleting 3-123, 127-157, 129-
162, 165-196, 199-261, 266-284, 289-422, 426-514 lines
to get working exploit. The code at this stage requires
more editing to come up with the final working exploit.

However, we provided a working exploit for this ex-
periment, showing a possible result of delta debugging
in demo_results/E2.js. We draw the reader’s atten-
tion to the code throw function thrower() {...},
which is a code fragment that was not part of the orig-
inal file in the corpus, but was injected by the variant
generator.
Results: After completing the experiment, the statistical
result can be found in Results/RESULTS.csv

(E3): [Running SANDDRILLER on a benchmark] [5 human-
minutes + 1 computing-hour]:
How to: To successfully accomplish this experiment we
run SANDDRILLER on a fairly large corpus consisting
of 5,000+ V8 tests. For simplicity, the variant generator
is disabled.
Preparation: First make sure to delete all generated test
cases on /tmp/res and delete the results file to work
in a clean environment. Then, uncomment line num-
ber 144 in test/run-multi-proc.js and change the
number of threads to 16 at line 12 by const POOL_SIZE
= 16;. Make sure the generator is disabled by setting
const useGenerator = false;. The sandbox from
the previous experiment should remain the same for this
experiment.
Execution: Run SANDDRILLER as mentioned in A.3.2.
Results: After completing the experiment, the detailed
results can be found in Results/RESULTS.csv, and a
summary of the the experiment will be printed in the
terminal. The results list all the tests in which SAND-
DRILLER succeeded to break the sandbox, test cases
that cause a hard crash of the sandbox, and more de-
tails such as execution time or number of oracle checks
performed at runtime. Feel free to attempt hosting any
of the produced exploits inside the vulnerable sandbox
(safe-eval) and observe its side effect in the global
scope, as before.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

3

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version

