
USENIX’23 Artifact Appendix:
FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets

Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He Wang,
Chunjie Cao, Yuqing Zhang, Flavio Toffalini, Mathias Payer

A Artifact Appendix

A.1 Abstract

The artifact of FISHFUZZ contains the source code, supportive
materials along with the documents and scripts to reproduce
the results. We release the artifact to help user reproduce the
two-stage evaluation results in the paper without too much
manual effort.

A.2 Description & Requirements

The FISHFUZZ artifact consists of the following components:

Source Code FISHFUZZ is a novel input prioritization
strategy, to demonstrate the generality, we implement FISH-
FUZZ based on AFL and AFL++ respectively (FFAFL and
FFAFL++). In this artifact, we release both of them and pro-
vide a wrapper to automate the compilation.

Supportive Materials Due to page limitation, we didn’t
include all raw data in the paper. In this artifact, we attach the
(1) raw data for p-value calculation (2) evaluation results for
different hyperparameters (3) full list of new bugs FISHFUZZ
found.

Reproduction Scripts In this artifact we provide the scripts
and the dockerfile that help users automatically build the
benchmark, start evaluations and analysis the results. The
benchmark included in the artifact is the two-stage benchmark
in the paper.

A.2.1 How to access

• The artifact is available at https://github.com/
HexHive/FishFuzz.

• The version we used for artifact evaluation is
https://github.com/HexHive/FishFuzz/commit/
911637cdf7448b97eccf1c9664ef318aff884b63.

A.2.2 Hardware dependencies

In the evaluation, we use a server equipped with Xeon Gold
5218(22M Cache, 2.30 GHz), 64 GB memory and 1TB disk
space. To reproduce this evaluation, more than 50GB disk
space is required.

A.2.3 Software dependencies

We plug this evaluation into the docker environment, therefore
the user only need to have a Linux server with docker and git
installed.

A.2.4 Benchmarks

The benchmark included in the artifact is two-stage bench-
mark in the paper, which consists of 7 real-world programs
that have various types of input format. We provide a docker-
file that automated the build process.

A.3 Set-up

We provide a detailed README in the folder ‘paper/artifact‘.
By following the instructions listed, the evaluation results
could be easily reproduced.

Tips: we allocate one cpu core for each fuzzer-benchmark
pair, and by default the evaluation contains 4 fuzzers * 7
benchmarks, which requires 28 cores to run all campaigns
at the same time. Therefore the users could remove some
programs or fuzzers according to their hardware bandwidth.

1
2 # f o r two−s t a g e
3 export BENCHMARK_NAME=two-stage
4 export IMAGE_NAME=fishfuzz:ae-twostage
5
6 git clone git@github.com/Hexhive/FishFuzz && \
7 cd FishFuzz/paper/artifact/$BENCHMARK_NAME
8
9 # b u i l d base do ck e r images

10 docker build -t $IMAGE_NAME .
11
12 # c r e a t e s c r i p t s f o r f u z z e r s t o run
13 python3 scripts/generate_script.py \
14 -b "$PWD/ r u n t i m e / f u z z _ s c r i p t "

Listing 1: Build Evaluation Image

1

https://github.com/HexHive/FishFuzz
https://github.com/HexHive/FishFuzz
https://github.com/HexHive/FishFuzz/commit/911637cdf7448b97eccf1c9664ef318aff884b63
https://github.com/HexHive/FishFuzz/commit/911637cdf7448b97eccf1c9664ef318aff884b63


To prepare the artifact evaluation, user should first down-
load the repo and build the docker image, as depicted in List-
ing 1. This step is expected to take about 1.5h. Afterward, run
the generate_script.py to generate the scripts for fuzzers to
run.

Afterward, we provide a script to generate the docker com-
mands, considering many servers didn’t have enough cores
(>= 28 cores), we only print the command and the user could
copy-paste to run. After 24h, the evaluations are done and
we should follow the given instructions for post-processing
(Listing 2)

1
2 # g e n e r a t e command & copy −p a s t e
3 python3 scripts/generate_runtime.py \
4 -b "$PWD/ r u n t i m e "
5
6 # w a i t 24h and s t o p a l l
7 docker rm -f $(docker ps -a -q
8 -f " a n c e s t o r =$IMAGE_NAME")
9

10 # g i v e w / r p e r m i s s i o n
11 sudo chown -R $(id -u):$(id -g) runtime/out
12
13 # copy e v a l u a t i o n r e s u l t s t o r e s u l t s f o l d e r
14 mkdir results/
15 python3 scripts/copy_results.py \
16 -s "$PWD/ r u n t i m e " \
17 -d "$PWD/ r e s u l t s / " -r 0
18
19
20 ...

Listing 2: Run the Evaluation

Finally, create a new container, copy the results dir into
root dir and run the analysis scripts as follow (Listing 3)

1
2 # c r e a t e c o n t a i n e r and mount r e s u l t s
3 cp -r scripts/ results/
4 docker run -it -v $PWD/results/:/results \
5 --name validate_twostage $IMAGE_NAME bash
6
7 # run a n a l y s i s
8 python3 scripts/analysis.py -b /results \
9 -c scripts/asan.queue.json -r 0 -d /results/log/0

10 python3 scripts/analysis.py -b /results \
11 -c scripts/asan.crash.json -r 0 -d /results/log/0
12
13 # p l o t t h e r e s u l t s ,
14 python3 scripts/print_result.py \
15 -b /results/log/ -r 0 -t all
16
17 ...

Listing 3: Evaluation Results Analysis

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): FFAFL and FFAFL++ should achieve better coverage
than their origin prototype AFL and AFL++. This is

proven by experiment and the original results can be
found in Table 5 in the paper.

(C2): FFAFL and FFAFL++ should find more bugs than the
direct competitors (AFL and AFL++). This is proven by
the experiment and the original results are available in
Table 7 and Figure 5-b.

A.4.2 Experiments

In the analysis step in subsection A.3, a coverage report along
with bug reports are generated and can clearly demonstrate
our claims C1 and C2.

In the paper we conduct 10 rounds of evaluation to reduce
the possible variance, however, due to the time limitation, we
suggest reducing the round to run, and 3 rounds might be
sufficient. In that case the artifact evaluation can be finished
in 3 days given a server equipped with 2 Xeon Gold 5218,
64GB memory and 1TB disk.

Besides, the bug report only consider the callstack and
ASan bug type, which might still have lots of duplications,
therefore in the paper we manually compare some stack traces
to get the actual number of UNIQUE bugs. But the report itself
is sufficient enough to support our claim C2.

A.5 Notes on Reusability
To make FISHFUZZ more usable, we develop an all-in-one
wrapper that automated all the compilation steps for both
FFAFL and FFAFL++. Users can refer to the manual in the
README.

Besides, we’re also working on the FISHFUZZ fuzzbench
integration for better evaluating the capability of FISHFUZZ.
Given that lots of fuzzbench targets didn’t support LTO mode,
we’re working on implementing a non-LTO mode FISHFUZZ
for the intergration and we’re keeping pushing it forward. An
experimental fuzzbench configuration file can be found in
paper/fuzzbench folder.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

2

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


