
USENIX’23 Artifact Appendix: A Verified Confidential Computing as a
Service Framework for Privacy Preservation

Hongbo Chen1, Haobin Hiroki Chen1, Mingshen Sun2, Kang Li3,
Zhaofeng Chen3, and XiaoFeng Wang1

1Indiana University Bloomington, {hc50,haobchen,xw7}@iu.edu
2Independent Researcher, bob@mssun.me

3CertiK, {kang.li, zhaofeng.chen}@certik.com

A Artifact Appendix

A.1 Abstract

We propose a security protection principle for confidential
computing, Proof of Being Forgotten (PoBF). It has two re-
quirements: NOLEAKAGE and NORESIDUE. These proper-
ties are formalized and proven under an abstract model for
Trusted Execution Environment (TEE) in Coq. On the other
hand, we implement a prototype PoBF-Compliant Framework
(PoCF), which provides a framework to conduct Confidential
Computing as a Service (CCaaS). These prototypes come
with a verifier that can prove some properties specified in
PoBF are satisfied. Besides, PoCF can support various real-
world applications and the protections introduced in PoCF
incur minor runtime performance overhead.

A.2 Description & Requirements

Reproducing the exact experiment results needs special hard-
ware support: processors with Intel SGX and AMD SEV
instruction extension support.

A.2.1 Security, privacy, and ethical concerns

Our artifacts come with no security, privacy, or ethical con-
cerns. However, since building it requires plenty of dependen-
cies and runtimes, we suggest reproducing the experiments in
a non-production environment. We also provide access to an
experiment virtual and/or physical machine.

A.2.2 How to access

Our code is published on GitHub and can be accessed
via the link: https://github.com/ya0guang/PoBF/tree/
usenix-sec-ae.

A.2.3 Hardware dependencies

The SGX-related experiments require an Intel processor with
SGX instruction extension, and SEV-related experiments re-
quire an AMD processor with SEV instruction extension.
Running the multi-threading test requires at least 32GB RAM
(EPC Size) and we recommend using servers with at least
64GB RAM.

A.2.4 Software dependencies

PoCF requires dependencies from the system software and
many dependencies for different platforms, so we recommend
following the build instructions in our README.md in the
GitHub repository or just running the script located un-
der the root directory, named setup.sh. We only list the
general software dependencies here.
Common Dependencies.

• Linux OS, preferably Ubuntu 20/22.04 LTS

• Rust nightly-2022-11-01

• python3: ≥ v3.8, < v3.11

• jupyter notebook

• mirai abstract interpreter (version recorded in the script)

• prusti verifier (version recorded in the script)

• tvm v0.12.0

• llvm ≥ v10.0

• Coq proof assistant > v8.13

SEV Specific Dependencies.

• Azure’s SEV Guest attestation library. See
https://github.com/Azure/
confidential-computing-cvm-guest-attestation.

1

https://github.com/ya0guang/PoBF/tree/usenix-sec-ae
https://github.com/ya0guang/PoBF/tree/usenix-sec-ae
https://github.com/Azure/confidential-computing-cvm-guest-attestation
https://github.com/Azure/confidential-computing-cvm-guest-attestation


SGX Dependencies.

• SGX Driver, not needed if kernel > 5.11

• SGX SDK v2.17.101

• Teaclave Rust SGX SDK and Intel SGX SDK for Linux

• Attestation dependencies, including aesm, dcap or epid

• (Optional) other TEE frameworks: enarx, gramine,
occlum

A.2.5 Benchmarks

Our benchmark data or the build scripts are included in the
repository. We develop several confidential computing tasks
that may require specific data and/or models. Workloads are
all in cctask/ folder, and the corresponding data (generators)
are data/.

• tvm task requires resnet152 and a picture input.

• db requires a ycsb client for generating, loading, and
querying the database. This client is a submodule in our
repository.

• fasta and fann requires generated sequence and an
input number (serialized as a little-endian byte array)
respectively.

• Other tasks require a dummy data payload.

A.3 Set-up
A.3.1 Installation

Please follow the README.md at https://github.com/
ya0guang/PoBF/tree/usenix-sec-ae to set up the soft-
ware environment. If you use the (virtual) machine provided
by us, you can ignore this step.

A.3.2 Basic Test

• To make sure SGX functions correctly, check sudo
service aesmd status and confirm it is successfully
serving. Also, you should see SGX-related devices when
using ls /dev | grep sgx.

• If TVM is installed and configured properly, one
should be able to compile the TVM library under
cctasks/evaluation_tvm/model_deploy. It can be
checked by simply executing make -j.

• Rust programs should work if compilation does not fail.

• Coq works if coqc command can be executed.

A.4 Evaluation workflow

A.4.1 Major Claims

(C1): The Coq proof is machine-checked.
(C2): PoCF verifier works on the sample project.
(C3): The protections in the PoCF introduce minor runtime

performance overhead compared to NATIVE setting.
(C4): The tasks are indeed supported by PoCF.

A.4.2 Experiments

Note: For the comprehensive instruction, please check
scripts/README.md in our repository.

E1 and E2 are verification of PoCF, and we expect the
experiment to be passing the verification. E3 and E4 are per-
formance evaluations that can be performed on Intel SGX
platform and/or AMD SEV platform. We have scripts for
both single- and multi-threaded experiments. We expect that
the protection introduced by POCF is minor compared to
NATIVE.
(E1): [Coq Proof Checking] [3 minutes]: successfully com-

pilation implies successful proof verification.
How to: Just compile the Coq source code.
Execution: Run coqc *.v at pobf_proof/
Results: Successful compilation.

(E2): [PoCF Verification] [5 human-minutes + 30-60
compute-minutes]: Verify the implementation of PoCF.
The verifier invokes mirai and prusti to conduct
NOLEAKAGE and NORESIDUE checkings.
How to: Please follow the steps in Verification
towards PoCF in our README.md.
Preparation: Install mirai and prusti using the
scripts. This takes some time to compile from the source
code.
Results: There are two cases for a negative case and a
positive case: one contains threats and one does not. One
can try to remove the verified_log! in the source file
src/userfunc.rs to see the difference

(E3): [Overhead Analysis (microbenchmarks)] [15 human-
minutes + 1 compute-hour + 1GB disk]: Confirm the
overhead introduced by PoCF protections is minor.
How to: First, compile and run the microbenchmarks.
Then analyze the data and generate the figure. This eval-
uation is performed in single- and multi-threading sce-
narios.
Preparation: Compile the microbenchmark tasks.
Execution: Run the evaluation scripts that can be found
under scripts/evaluation.sh. Remember to set the
task variable to the task polybench. It will perform
10 repetitions (or more if you need). The cost breakup
results would be automatically printed to the console if
you are evaluating the PoBF task. For the stack page
number microbenchmark, please refer to README.md.
Results: First execute the code in the Python notebook

2

https://github.com/ya0guang/PoBF/tree/usenix-sec-ae
https://github.com/ya0guang/PoBF/tree/usenix-sec-ae


under scripts/figure.ipynb. The script draws the
figures that show the performance of POCF and NATIVE
on different tasks. We expect the performance (execution
time) of POCF to be better. For other microbenhmarks,
please copy-and-paste the results to the Jupyter notebook
and visualize them.

(E4 ): [Real-world application (macrobenchmarks)] [30
human-minutes + 1 compute-hour + 5GB disk]: Confirm
the overhead introduced by PoCF protections is minor.
How to: First compile and run the confidential comput-
ing tasks. Then analyze the data and generate the figure.
This evaluation is also performed in single- and multi-
threading scenarios.
Preparation: Compile the macrobenchmark tasks.
Execution: For the KVDB task: Please execute the
YCSB client that is included as a submodule in the
repository. Follow the instruction in the README.md.
You may need to first load the data by the workload
workload/load.toml and then execute the correspond-
ing workload A and C. For other tasks: Please execute
the evaluation script scripts/evaluation.sh.
Results: Execute code in the Python notebook
scripts/db.ipynb, scripts/figure.ipynb The
script draws the figures that show the performance of
POCF and NATIVE on different tasks. We expect the
performance (execution time) of POCF to be better. For
the results collected from YCSB, please copy-and-paste
the results to the plotting script.

A.5 Notes on Reusability
• If you want to modify the state transitions, edit
pobf_state/src/task.rs.

• If you want to add/modify the CC Task, follow the ex-
amples in cctasks. You may also want to modify the
build script.

• You could also change the verification options by modi-
fying pobf_verifier/pobf-verify

Note that our artifact is an academic project. Any use of
the code should adhere to the license.

A.6 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

3

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Notes on Reusability
	Version


