
USENIX’23 Artifact Appendix
DAFL: Directed Grey-box Fuzzing Guided by Data Dependency

Tae Eun Kim
KAIST

Jaeseung Choi
Sogang University

Kihong Heo
KAIST

Sang Kil Cha
KAIST

A Artifact Appendix

This artifact appendix is a self-contained document which
describes a roadmap for the evaluation of DAFL.

A.1 Abstract

DAFL is a directed grey-box fuzzer that leverages data depen-
dency to guide the fuzzing process. DAFL’s artifact provides
a framework to run DAFL as well as the baseline fuzzers. The
framework comprises an environment provided as a Docker
image to run the fuzzers, the source code of DAFL, and the
scripts to run the fuzzers and evaluate the results. This docu-
ment describes how to set up the framework and replicate the
experiment conducted in our paper.

A.2 Description & Requirements

In this section, we describe how to obtain our artifact, along
with the hardware and software requirements to run our arti-
fact.

A.2.1 Security, privacy, and ethical concerns

None

A.2.2 How to access

Our artifact is composed of two components: the Docker im-
age and the framework to build and utilize it. The Docker
image provides the environment to run individual fuzzing
sessions by supporting all the necessary tools and dependen-
cies. The framework builds the Docker image, orchestrates
the fuzzing experiments, and evaluates the results.

The framework is accessible via a Zenodo link (https:
//zenodo.org/record/8219904). You can also down-
load the same framework from the GitHub repository
(https://github.com/prosyslab/DAFL-artifact). For
the Docker image, we provide a pre-built Docker image
via Docker Hub https://hub.docker.com/r/prosyslab/
dafl-artifact. Nonetheless, you can also build the Docker
image from scratch using the Dockerfile provided in the frame-
work.

A.2.3 Hardware dependencies

We ran the experiment on the machines equipped with In-
tel(R) Xeon(R) Gold 6226R CPU (2.90GHz) with 64 cores
and 192 GB of RAM. Each fuzzing session was run on a
Docker container assigned with a single CPU core and 4GB
of memory. As we repeated the experiment 40 times, each
fuzzing session was run in parallel, utilizing 40 CPU cores at
a time.

It is possible to run the experiment on a machine with fewer
CPU cores and smaller RAM, but be sure to assign enough
resources to each fuzzing session (e.g., 1 CPU core and 4GB
of RAM for each fuzzing session).

The disk space requirement will vary depending on the
volume of the experiment. However, we recommend at least
70 GB of disk space, since the provided Docker image alone
is 25 GB and our main experiment results in 45 GB of data.

A.2.4 Software dependencies

Ubuntu 20.04, Docker, and Python 3.8 are required to run the
artifact. The required Python dependencies can be installed
by running the following command in the DAFL-artifact
directory.

yes | pip3 install -r requirements.txt

A.2.5 Benchmarks

As described in our paper (Section 5.1), we used 41 vulnera-
bilities from the Beacon [1] paper.

A.3 Set-up
In this section, we describe how to set up the artifact for
DAFL.

A.3.1 Installation

The following is the steps to install the artifact for DAFL.

1) Download the file DAFL-artifact.tar.gz from the
provided Zenodo link. This file is the aforementioned

https://zenodo.org/record/8219904
https://zenodo.org/record/8219904
https://github.com/prosyslab/DAFL-artifact
https://hub.docker.com/r/prosyslab/dafl-artifact
https://hub.docker.com/r/prosyslab/dafl-artifact


framework where you can build the Docker image, or-
chestrate the fuzzing experiments, and evaluate the re-
sults.

2) Extract the file to a directory of your choice.

tar -zxvf DAFL-artifact.tar.gz

3) Obtain the Docker image by:

1) pulling from Docker Hub

docker pull prosyslab/dafl-artifact

2) or building from scratch

docker build -t prosyslab/dafl-artifact -f Dockerfile .

This Docker image is the environment to run individual
fuzzing sessions.

A.3.2 Basic Test

For a single fuzzing experiment, run the following command
in the DAFL-artifact directory:

python3 scripts/reproduce.py run [target] [time budget]
[iterations] "[list of fuzzers]"

where [target] is the name of the target, [time budget]
is the time budget in seconds, [iterations] is the number
of fuzzing iterations, and [list of fuzzers] is the list of
fuzzers to run.

To run a simple functionality test, we recommend using
the target lrzip-ed51e14-2018-11496 with 60 seconds
of time budget and 10 fuzzing iterations. For the list of
fuzzers, use "AFL AFLGo WindRanger Beacon DAFL".
The command will look like the following:

python3 scripts/reproduce.py run lrzip-ed51e14-2018-
11496 60 10 "AFL AFLGo WindRanger Beacon DAFL"

If set up was successful, a CSV file will be
generated in the output directory with the name
output/lrzip-ed51e14-2018-11496-60sec-10iters.
This CSV file contains the results of the experiment, which is
the median TTE of each fuzzer. In case of running 10 fuzzing
sessions in parallel, this small experiment will take about 10
minutes.

A.4 Evaluation workflow

This section describes the operational steps and experiments
which must be performed to evaluate DAFL’s artifact.

A.4.1 Major Claims

Our paper makes the following claims:

(C1): DAFL is more effective in reproducing target crashes
compared to the baseline fuzzers. This is proven by the
experiment (E1) described in Section 5.2 of our paper
whose results are illustrated in Table 2 and Figure 5.

(C2): Thin slicing shows better fuzzing performance com-
pared to the naive approach. This is proven by the exper-
iment (E2) described in Section 5.3 of our paper whose
results are illustrated in Figure 7.

(C3): Two major components of DAFL, selective coverage
instrumentation and semantic relevance scoring, both
contribute to the fuzzing performance. This is proven
by the experiment (E3) described in Section 5.4 of our
paper whose results are illustrated in Figure 8.

A.4.2 Experiments

We have used a vast amount of resources to conduct the exper-
iments for our paper. For example, we ran a 24-hour fuzzing
session with 6 fuzzers on 41 targets, each repeated 40 times
for the main experiment (E1) described in Section 5.2 of
our paper. If run on a single machine capable of running 40
fuzzing sessions in parallel, this experiment would take 246
days of fuzzing time. We believe that it is not an easy task to
replicate the experiments in our paper at a full scale.

Thus, apart from the instructions to exactly replicate our
paper’s experiments, we additionally provide instructions to
run a scaled down version for each of the experiments to
enable a feasible evaluation. The scaled down version of the
experiments comprises fewer fuzzers, fewer targets, fewer
iterations, and shorter time limit. For example, it excludes the
targets where all the fuzzers failed to produce a median TTE
within 24 hours. It also early terminates the fuzzing session
based on the previously observed median TTE of each target.
We also provide a minimal version of each experiment, which
runs a small subset of targets. For more details on the scaled
down version and the minimal version, please refer to the
README file.

We believe that the scaled down version of the experiments
is sufficient to validate the claims made in our paper. However,
please note that the results of the alternative versions of the
experiments are more prone to fluctuations due to the reduced
number of iterations.

The expected time for each of the experiments is calculated
under the assumption of running the experiment on a machine
where 40 fuzzing sessions can be run in parallel. Each experi-
ment results in a CSV file which contains the median TTE of
each fuzzer for each target and a bar plot in the same format
as in the paper.
(E1): [Effectiveness of DAFL] [246 compute-day + 70GB

disk]: This is the main experiment described in Section



5.2 of our paper, which compares the effectiveness of
DAFL with the baseline fuzzers.
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run tbl2 86400 40

Results: The result is in the form of a CSV file, which
is located in the output directory (refer to the README
file for the exact location of this file). This CSV file
contains the median TTE of each fuzzer for each target.
Additionally, a bar plot will be generated from the CSV
file.

(E1: scaled down): [8 compute-days + 30GB disk]: The
scaled down version of (E1).
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run tbl2-scaled 86400 10

Results: Same as (E1), with fewer targets and fuzzers.

(E2): [Effectiveness of thin slicing] [93 compute-day +
60GB disk]: This is the experiment described in Sec-
tion 5.3 of our paper, which compares the effectiveness
of thin and naive slicing approaches.
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run fig7 86400 40

Results: In same format as in (E1).

(E2: scaled down): [6 (or 2) compute-days + 30GB disk]:
The scaled down version of (E2).
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run fig7-scaled 86400 10

If you have already run (E1: scaled down), the
results of AFL and DAFL will be automatically
reused as long as you have the results of (E1:
scaled down) under the expected output directory,
output/tbl2-scaled-86400sec-10iters. Thus, the
expected runtime will be reduced to 1 compute-day.
Results: Same as (E2), with fewer targets.

(E3): [Effectiveness of DAFL’s components] [124 compute-
day + 60GB disk]: This is the experiment described in
Section 5.4 of our paper, which evaluated the effective-
ness of DAFL’s components.
How to: In the DAFL-artifact directory, run the

following command:

python3 scripts/reproduce.py run fig8 86400 40

Results: In same format as in (E1).

(E3: scaled down): [8 (or 4) compute-days + 30GB disk]:
The scaled down version of (E3).
How to: In the DAFL-artifact directory, run the
following command:

python3 scripts/reproduce.py run fig8-scaled 86400 10

As so in (E2: scaled down), if you have already run (E1:
scaled down), the results of AFL and DAFL will be
automatically reused as long as you have the results of
(E1: scaled down) under the expected output directory,
output/tbl2-scaled-86400sec-10iters. Thus, the
expected runtime will be reduced to 2 compute-days.

Results: Same as (E3), with fewer targets.

A.5 Version
Based on the LaTeX template for Artifact Evaluation
V20220926. Submission, reviewing and badging methodol-
ogy followed for the evaluation of this artifact can be found at
https://secartifacts.github.io/usenixsec2023/.

References

[1] Heqing Huang, Yiyuan Guo, Qingkai Shi, Peisen Yao,
Rongxin Wu, and Charles Zhang. Beacon: Directed grey-
box fuzzing with provable path pruning. In Proceedings
of the IEEE Symposium on Security and Privacy, pages
36–50, 2022.

https://secartifacts.github.io/usenixsec2023/

	Artifact Appendix
	Abstract
	Description & Requirements
	Security, privacy, and ethical concerns
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Set-up
	Installation
	Basic Test

	Evaluation workflow
	Major Claims
	Experiments

	Version


